Source code for cartopy.mpl.gridliner

# Copyright Cartopy Contributors
#
# This file is part of Cartopy and is released under the LGPL license.
# See COPYING and COPYING.LESSER in the root of the repository for full
# licensing details.

import itertools
import operator
import warnings

import matplotlib
import matplotlib.collections as mcollections
import matplotlib.ticker as mticker
import matplotlib.transforms as mtrans
import numpy as np
import shapely.geometry as sgeom

import cartopy
from cartopy.crs import PlateCarree, Projection, _RectangularProjection
from cartopy.mpl.ticker import (LatitudeFormatter, LatitudeLocator,
                                LongitudeFormatter, LongitudeLocator)


degree_locator = mticker.MaxNLocator(nbins=9, steps=[1, 1.5, 1.8, 2, 3, 6, 10])
classic_locator = mticker.MaxNLocator(nbins=9)
classic_formatter = mticker.ScalarFormatter

_X_INLINE_PROJS = (
    cartopy.crs.InterruptedGoodeHomolosine,
    cartopy.crs.LambertConformal,
    cartopy.crs.Mollweide,
    cartopy.crs.Sinusoidal,
    cartopy.crs.RotatedPole,
)
_POLAR_PROJS = (
    cartopy.crs.NorthPolarStereo,
    cartopy.crs.SouthPolarStereo,
    cartopy.crs.Stereographic
)
_ROTATE_LABEL_PROJS = _POLAR_PROJS + (
    cartopy.crs.AlbersEqualArea,
    cartopy.crs.AzimuthalEquidistant,
    cartopy.crs.EquidistantConic,
    cartopy.crs.LambertConformal,
    cartopy.crs.TransverseMercator,
    cartopy.crs.Gnomonic,
    cartopy.crs.ObliqueMercator,
)


def _fix_lons(lons):
    """
    Fix the given longitudes into the range ``[-180, 180]``.

    """
    lons = np.array(lons, copy=False, ndmin=1)
    fixed_lons = ((lons + 180) % 360) - 180
    # Make the positive 180s positive again.
    fixed_lons[(fixed_lons == -180) & (lons > 0)] *= -1
    return fixed_lons


def _lon_hemisphere(longitude):
    """Return the hemisphere (E, W or '' for 0) for the given longitude."""
    longitude = _fix_lons(longitude)
    if longitude > 0:
        hemisphere = 'E'
    elif longitude < 0:
        hemisphere = 'W'
    else:
        hemisphere = ''
    return hemisphere


def _lat_hemisphere(latitude):
    """Return the hemisphere (N, S or '' for 0) for the given latitude."""
    if latitude > 0:
        hemisphere = 'N'
    elif latitude < 0:
        hemisphere = 'S'
    else:
        hemisphere = ''
    return hemisphere


def _east_west_formatted(longitude, num_format='g'):
    hemisphere = _lon_hemisphere(longitude)
    return f'{abs(longitude):{num_format}}\N{Degree Sign}{hemisphere}'


def _north_south_formatted(latitude, num_format='g'):
    hemisphere = _lat_hemisphere(latitude)
    return f'{abs(latitude):{num_format}}\N{Degree Sign}{hemisphere}'


#: A formatter which turns longitude values into nice longitudes such as 110W
LONGITUDE_FORMATTER = mticker.FuncFormatter(lambda v, pos:
                                            _east_west_formatted(v))
#: A formatter which turns longitude values into nice longitudes such as 45S
LATITUDE_FORMATTER = mticker.FuncFormatter(lambda v, pos:
                                           _north_south_formatted(v))


[docs]class Gridliner: # NOTE: In future, one of these objects will be add-able to a GeoAxes (and # maybe even a plain old mpl axes) and it will call the "_draw_gridliner" # method on draw. This will enable automatic gridline resolution # determination on zoom/pan. def __init__(self, axes, crs, draw_labels=False, xlocator=None, ylocator=None, collection_kwargs=None, xformatter=None, yformatter=None, dms=False, x_inline=None, y_inline=None, auto_inline=True, xlim=None, ylim=None, rotate_labels=None, xlabel_style=None, ylabel_style=None, labels_bbox_style=None, xpadding=5, ypadding=5, offset_angle=25, auto_update=False, formatter_kwargs=None): """ Object used by :meth:`cartopy.mpl.geoaxes.GeoAxes.gridlines` to add gridlines and tick labels to a map. Parameters ---------- axes The :class:`cartopy.mpl.geoaxes.GeoAxes` object to be drawn on. crs The :class:`cartopy.crs.CRS` defining the coordinate system that the gridlines are drawn in. draw_labels: optional Toggle whether to draw labels. For finer control, attributes of :class:`Gridliner` may be modified individually. Defaults to False. - string: "x" or "y" to only draw labels of the respective coordinate in the CRS. - list: Can contain the side identifiers and/or coordinate types to select which ones to draw. For all labels one would use `["x", "y", "top", "bottom", "left", "right", "geo"]`. - dict: The keys are the side identifiers ("top", "bottom", "left", "right") and the values are the coordinates ("x", "y"); this way you can precisely decide what kind of label to draw and where. For x labels on the bottom and y labels on the right you could pass in `{"bottom": "x", "left": "y"}`. Note that, by default, x and y labels are not drawn on left/right and top/bottom edges respectively, unless explicitly requested. xlocator: optional A :class:`matplotlib.ticker.Locator` instance which will be used to determine the locations of the gridlines in the x-coordinate of the given CRS. Defaults to None, which implies automatic locating of the gridlines. ylocator: optional A :class:`matplotlib.ticker.Locator` instance which will be used to determine the locations of the gridlines in the y-coordinate of the given CRS. Defaults to None, which implies automatic locating of the gridlines. xformatter: optional A :class:`matplotlib.ticker.Formatter` instance to format labels for x-coordinate gridlines. It defaults to None, which implies the use of a :class:`cartopy.mpl.ticker.LongitudeFormatter` initiated with the ``dms`` argument, if the crs is of :class:`~cartopy.crs.PlateCarree` type. yformatter: optional A :class:`matplotlib.ticker.Formatter` instance to format labels for y-coordinate gridlines. It defaults to None, which implies the use of a :class:`cartopy.mpl.ticker.LatitudeFormatter` initiated with the ``dms`` argument, if the crs is of :class:`~cartopy.crs.PlateCarree` type. collection_kwargs: optional Dictionary controlling line properties, passed to :class:`matplotlib.collections.Collection`. Defaults to None. dms: bool When default locators and formatters are used, ticks are able to stop on minutes and seconds if minutes is set to True, and not fraction of degrees. x_inline: optional Toggle whether the x labels drawn should be inline. y_inline: optional Toggle whether the y labels drawn should be inline. auto_inline: optional Set x_inline and y_inline automatically based on projection. xlim: optional Set a limit for the gridlines so that they do not go all the way to the edge of the boundary. xlim can be a single number or a (min, max) tuple. If a single number, the limits will be (-xlim, +xlim). ylim: optional Set a limit for the gridlines so that they do not go all the way to the edge of the boundary. ylim can be a single number or a (min, max) tuple. If a single number, the limits will be (-ylim, +ylim). rotate_labels: optional, bool, str Allow the rotation of non-inline labels. - False: Do not rotate the labels. - True: Rotate the labels parallel to the gridlines. - None: no rotation except for some projections (default). - A float: Rotate labels by this value in degrees. xlabel_style: dict A dictionary passed through to ``ax.text`` on x label creation for styling of the text labels. ylabel_style: dict A dictionary passed through to ``ax.text`` on y label creation for styling of the text labels. labels_bbox_style: dict bbox style for all text labels xpadding: float Padding for x labels. If negative, the labels are drawn inside the map. ypadding: float Padding for y labels. If negative, the labels are drawn inside the map. offset_angle: float Difference of angle in degrees from 90 to define when a label must be flipped to be more readable. For example, a value of 10 makes a vertical top label to be flipped only at 100 degrees. auto_update: bool Whether to redraw the gridlines and labels when the figure is updated. formatter_kwargs: dict, optional Options passed to the default formatters. See :class:`~cartopy.mpl.ticker.LongitudeFormatter` and :class:`~cartopy.mpl.ticker.LatitudeFormatter` Notes ----- The "x" and "y" labels for locators and formatters do not necessarily correspond to X and Y, but to the first and second coordinates of the specified CRS. For the common case of PlateCarree gridlines, these correspond to longitudes and latitudes. Depending on the projection used for the map, meridians and parallels can cross both the X axis and the Y axis. """ self.axes = axes #: The :class:`~matplotlib.ticker.Locator` to use for the x #: gridlines and labels. if xlocator is not None: if not isinstance(xlocator, mticker.Locator): xlocator = mticker.FixedLocator(xlocator) self.xlocator = xlocator elif isinstance(crs, PlateCarree): self.xlocator = LongitudeLocator(dms=dms) else: self.xlocator = classic_locator #: The :class:`~matplotlib.ticker.Locator` to use for the y #: gridlines and labels. if ylocator is not None: if not isinstance(ylocator, mticker.Locator): ylocator = mticker.FixedLocator(ylocator) self.ylocator = ylocator elif isinstance(crs, PlateCarree): self.ylocator = LatitudeLocator(dms=dms) else: self.ylocator = classic_locator formatter_kwargs = { **(formatter_kwargs or {}), "dms": dms, } if xformatter is None: if isinstance(crs, PlateCarree): xformatter = LongitudeFormatter(**formatter_kwargs) else: xformatter = classic_formatter() #: The :class:`~matplotlib.ticker.Formatter` to use for the lon labels. self.xformatter = xformatter if yformatter is None: if isinstance(crs, PlateCarree): yformatter = LatitudeFormatter(**formatter_kwargs) else: yformatter = classic_formatter() #: The :class:`~matplotlib.ticker.Formatter` to use for the lat labels. self.yformatter = yformatter # Draw label argument if isinstance(draw_labels, list): # Select to which coordinate it is applied if 'x' not in draw_labels and 'y' not in draw_labels: value = True elif 'x' in draw_labels and 'y' in draw_labels: value = ['x', 'y'] elif 'x' in draw_labels: value = 'x' else: value = 'y' #: Whether to draw labels on the top of the map. self.top_labels = value if 'top' in draw_labels else False #: Whether to draw labels on the bottom of the map. self.bottom_labels = value if 'bottom' in draw_labels else False #: Whether to draw labels on the left hand side of the map. self.left_labels = value if 'left' in draw_labels else False #: Whether to draw labels on the right hand side of the map. self.right_labels = value if 'right' in draw_labels else False #: Whether to draw labels near the geographic limits of the map. self.geo_labels = value if 'geo' in draw_labels else False elif isinstance(draw_labels, dict): self.top_labels = draw_labels.get('top', False) self.bottom_labels = draw_labels.get('bottom', False) self.left_labels = draw_labels.get('left', False) self.right_labels = draw_labels.get('right', False) self.geo_labels = draw_labels.get('geo', False) else: self.top_labels = draw_labels self.bottom_labels = draw_labels self.left_labels = draw_labels self.right_labels = draw_labels self.geo_labels = draw_labels for loc in 'top', 'bottom', 'left', 'right', 'geo': value = getattr(self, f'{loc}_labels') if isinstance(value, str): value = value.lower() if (not isinstance(value, (list, bool)) and value not in ('x', 'y')): raise ValueError(f"Invalid draw_labels argument: {value}") if auto_inline: if isinstance(self.axes.projection, _X_INLINE_PROJS): self.x_inline = True self.y_inline = False elif isinstance(self.axes.projection, _POLAR_PROJS): self.x_inline = False self.y_inline = True else: self.x_inline = False self.y_inline = False # overwrite auto_inline if necessary if x_inline is not None: #: Whether to draw x labels inline self.x_inline = x_inline elif not auto_inline: self.x_inline = False if y_inline is not None: #: Whether to draw y labels inline self.y_inline = y_inline elif not auto_inline: self.y_inline = False # Apply inline args if not draw_labels: self.inline_labels = False elif self.x_inline and self.y_inline: self.inline_labels = True elif self.x_inline: self.inline_labels = "x" elif self.y_inline: self.inline_labels = "y" else: self.inline_labels = False # Gridline limits so that the gridlines don't extend all the way # to the edge of the boundary self.xlim = xlim self.ylim = ylim #: Whether to draw the x gridlines. self.xlines = True #: Whether to draw the y gridlines. self.ylines = True #: A dictionary passed through to ``ax.text`` on x label creation #: for styling of the text labels. self.xlabel_style = xlabel_style or {} #: A dictionary passed through to ``ax.text`` on y label creation #: for styling of the text labels. self.ylabel_style = ylabel_style or {} #: bbox style for grid labels self.labels_bbox_style = ( labels_bbox_style or {'pad': 0, 'visible': False}) #: The padding from the map edge to the x labels in points. self.xpadding = xpadding #: The padding from the map edge to the y labels in points. self.ypadding = ypadding #: Control the rotation of labels. if rotate_labels is None: rotate_labels = ( self.axes.projection.__class__ in _ROTATE_LABEL_PROJS) if not isinstance(rotate_labels, (bool, float, int)): raise ValueError("Invalid rotate_labels argument") self.rotate_labels = rotate_labels self.offset_angle = offset_angle # Current transform self.crs = crs # if the user specifies tick labels at this point, check if they can # be drawn. The same check will take place at draw time in case # public attributes are changed after instantiation. if draw_labels and not (x_inline or y_inline or auto_inline): self._assert_can_draw_ticks() #: The number of interpolation points which are used to draw the #: gridlines. self.n_steps = 100 #: A dictionary passed through to #: ``matplotlib.collections.LineCollection`` on grid line creation. self.collection_kwargs = collection_kwargs #: The x gridlines which were created at draw time. self.xline_artists = [] #: The y gridlines which were created at draw time. self.yline_artists = [] # List of all labels (Label objects) self._labels = [] # Draw status self._drawn = False self._auto_update = auto_update # Check visibility of labels at each draw event # (or once drawn, only at resize event ?) self.axes.figure.canvas.mpl_connect('draw_event', self._draw_event) @property def xlabels_top(self): warnings.warn('The .xlabels_top attribute is deprecated. Please ' 'use .top_labels to toggle visibility instead.') return self.top_labels @xlabels_top.setter def xlabels_top(self, value): warnings.warn('The .xlabels_top attribute is deprecated. Please ' 'use .top_labels to toggle visibility instead.') self.top_labels = value @property def xlabels_bottom(self): warnings.warn('The .xlabels_bottom attribute is deprecated. Please ' 'use .bottom_labels to toggle visibility instead.') return self.bottom_labels @xlabels_bottom.setter def xlabels_bottom(self, value): warnings.warn('The .xlabels_bottom attribute is deprecated. Please ' 'use .bottom_labels to toggle visibility instead.') self.bottom_labels = value @property def ylabels_left(self): warnings.warn('The .ylabels_left attribute is deprecated. Please ' 'use .left_labels to toggle visibility instead.') return self.left_labels @ylabels_left.setter def ylabels_left(self, value): warnings.warn('The .ylabels_left attribute is deprecated. Please ' 'use .left_labels to toggle visibility instead.') self.left_labels = value @property def ylabels_right(self): warnings.warn('The .ylabels_right attribute is deprecated. Please ' 'use .right_labels to toggle visibility instead.') return self.right_labels @ylabels_right.setter def ylabels_right(self, value): warnings.warn('The .ylabels_right attribute is deprecated. Please ' 'use .right_labels to toggle visibility instead.') self.right_labels = value def _draw_event(self, event): self._draw_gridliner(renderer=event.renderer) def has_labels(self): return len(self._labels) != 0 @property def label_artists(self): """All the labels which were created at draw time""" return [label.artist for label in self._labels] @property def top_label_artists(self): """The top labels which were created at draw time""" return [label.artist for label in self._labels if label.loc == "top"] @property def bottom_label_artists(self): """The bottom labels which were created at draw time""" return [label.artist for label in self._labels if label.loc == "bottom"] @property def left_label_artists(self): """The left labels which were created at draw time""" return [label.artist for label in self._labels if label.loc == "left"] @property def right_label_artists(self): """The right labels which were created at draw time""" return [label.artist for label in self._labels if label.loc == "right"] @property def geo_label_artists(self): """The geo spine labels which were created at draw time""" return [label.artist for label in self._labels if label.loc == "geo"] @property def x_inline_label_artists(self): """The x-coordinate inline labels which were created at draw time""" return [label.artist for label in self._labels if label.loc == "x_inline"] @property def y_inline_label_artists(self): """The y-coordinate inline labels which were created at draw time""" return [label.artist for label in self._labels if label.loc == "y_inline"] @property def xlabel_artists(self): """The x-coordinate labels which were created at draw time""" return [label.artist for label in self._labels if label.xy == "x"] @property def ylabel_artists(self): """The y-coordinate labels which were created at draw time""" return [label.artist for label in self._labels if label.xy == "y"] def _crs_transform(self): """ Get the drawing transform for our gridlines. Note ---- The drawing transform depends on the transform of our 'axes', so it may change dynamically. """ transform = self.crs if not isinstance(transform, mtrans.Transform): transform = transform._as_mpl_transform(self.axes) return transform @staticmethod def _round(x, base=5): if np.isnan(base): base = 5 return int(base * round(x / base)) def _find_midpoints(self, lim, ticks): # Find the center point between each lat gridline. if len(ticks) > 1: cent = np.diff(ticks).mean() / 2 else: cent = np.nan if isinstance(self.axes.projection, _POLAR_PROJS): lq = 90 uq = 90 else: lq = 25 uq = 75 midpoints = (self._round(np.percentile(lim, lq), cent), self._round(np.percentile(lim, uq), cent)) return midpoints def _draw_this_label(self, xylabel, loc): """Should I draw this kind of label here?""" draw_labels = getattr(self, loc + '_labels') # By default, only x on top/bottom and only y on left/right if draw_labels is True and loc != 'geo': draw_labels = "x" if loc in ["top", "bottom"] else "y" # Don't draw if not draw_labels: return False # Explicit x or y if isinstance(draw_labels, str): draw_labels = [draw_labels] # Explicit list of x and/or y if isinstance(draw_labels, list) and xylabel not in draw_labels: return False return True def _draw_gridliner(self, nx=None, ny=None, renderer=None): """Create Artists for all visible elements and add to our Axes. The following rules apply for the visibility of labels: - X-type labels are plotted along the bottom, top and geo spines. - Y-type labels are plotted along the left, right and geo spines. - A label must not overlap another label marked as visible. - A label must not overlap the map boundary. - When a label is about to be hidden, its padding is slightly increase until it can be drawn or until a padding limit is reached. """ # Update only when needed or requested if self._drawn and not self._auto_update: return self._drawn = True # Clear lists of artists for lines in [*self.xline_artists, *self.yline_artists]: lines.remove() self.xline_artists.clear() self.yline_artists.clear() for label in self._labels: label.artist.remove() self._labels.clear() # Inits lon_lim, lat_lim = self._axes_domain(nx=nx, ny=ny) transform = self._crs_transform() n_steps = self.n_steps crs = self.crs # Get nice ticks within crs domain lon_ticks = self.xlocator.tick_values(lon_lim[0], lon_lim[1]) lat_ticks = self.ylocator.tick_values(lat_lim[0], lat_lim[1]) inf = max(lon_lim[0], crs.x_limits[0]) sup = min(lon_lim[1], crs.x_limits[1]) lon_ticks = [value for value in lon_ticks if inf <= value <= sup] inf = max(lat_lim[0], crs.y_limits[0]) sup = min(lat_lim[1], crs.y_limits[1]) lat_ticks = [value for value in lat_ticks if inf <= value <= sup] ##################### # Gridlines drawing # ##################### collection_kwargs = self.collection_kwargs if collection_kwargs is None: collection_kwargs = {} collection_kwargs = collection_kwargs.copy() collection_kwargs['transform'] = transform if not any(x in collection_kwargs for x in ['c', 'color']): collection_kwargs.setdefault('color', matplotlib.rcParams['grid.color']) if not any(x in collection_kwargs for x in ['ls', 'linestyle']): collection_kwargs.setdefault('linestyle', matplotlib.rcParams['grid.linestyle']) if not any(x in collection_kwargs for x in ['lw', 'linewidth']): collection_kwargs.setdefault('linewidth', matplotlib.rcParams['grid.linewidth']) # Meridians lat_min, lat_max = lat_lim if lat_ticks: lat_min = min(lat_min, min(lat_ticks)) lat_max = max(lat_max, max(lat_ticks)) lon_lines = np.empty((len(lon_ticks), n_steps, 2)) lon_lines[:, :, 0] = np.array(lon_ticks)[:, np.newaxis] lon_lines[:, :, 1] = np.linspace( lat_min, lat_max, n_steps)[np.newaxis, :] if self.xlines: nx = len(lon_lines) + 1 # XXX this bit is cartopy specific. (for circular longitudes) # Purpose: omit plotting the last x line, # as it may overlap the first. if (isinstance(crs, Projection) and isinstance(crs, _RectangularProjection) and abs(np.diff(lon_lim)) == abs(np.diff(crs.x_limits))): nx -= 1 lon_lc = mcollections.LineCollection(lon_lines, **collection_kwargs) self.xline_artists.append(lon_lc) self.axes.add_collection(lon_lc, autolim=False) # Parallels lon_min, lon_max = lon_lim if lon_ticks: lon_min = min(lon_min, min(lon_ticks)) lon_max = max(lon_max, max(lon_ticks)) lat_lines = np.empty((len(lat_ticks), n_steps, 2)) lat_lines[:, :, 0] = np.linspace(lon_min, lon_max, n_steps)[np.newaxis, :] lat_lines[:, :, 1] = np.array(lat_ticks)[:, np.newaxis] if self.ylines: lat_lc = mcollections.LineCollection(lat_lines, **collection_kwargs) self.yline_artists.append(lat_lc) self.axes.add_collection(lat_lc, autolim=False) ################# # Label drawing # ################# if not any((self.left_labels, self.right_labels, self.bottom_labels, self.top_labels, self.inline_labels, self.geo_labels)): return self._assert_can_draw_ticks() # Inits for labels max_padding_factor = 5 delta_padding_factor = 0.2 spines_specs = { 'left': { 'index': 0, 'coord_type': "x", 'opcmp': operator.le, 'opval': max, }, 'bottom': { 'index': 1, 'coord_type': "y", 'opcmp': operator.le, 'opval': max, }, 'right': { 'index': 0, 'coord_type': "x", 'opcmp': operator.ge, 'opval': min, }, 'top': { 'index': 1, 'coord_type': "y", 'opcmp': operator.ge, 'opval': min, }, } for side, specs in spines_specs.items(): bbox = self.axes.spines[side].get_window_extent(renderer) specs['coords'] = [ getattr(bbox, specs['coord_type'] + idx) for idx in "01"] def update_artist(artist, renderer): artist.update_bbox_position_size(renderer) this_patch = artist.get_bbox_patch() this_path = this_patch.get_path().transformed( this_patch.get_transform()) return this_path # Get the real map boundaries self.axes.spines["geo"].get_window_extent(renderer) # update coords map_boundary_path = self.axes.spines["geo"].get_path().transformed( self.axes.spines["geo"].get_transform()) map_boundary = sgeom.Polygon(map_boundary_path.vertices) if self.x_inline: y_midpoints = self._find_midpoints(lat_lim, lat_ticks) if self.y_inline: x_midpoints = self._find_midpoints(lon_lim, lon_ticks) # Cache a few things so they aren't re-calculated in the loops. crs_transform = self._crs_transform().transform inverse_data_transform = self.axes.transData.inverted().transform_point for xylabel, lines, line_ticks, formatter, label_style in ( ('x', lon_lines, lon_ticks, self.xformatter, self.xlabel_style.copy()), ('y', lat_lines, lat_ticks, self.yformatter, self.ylabel_style.copy())): x_inline = self.x_inline and xylabel == 'x' y_inline = self.y_inline and xylabel == 'y' padding = getattr(self, f'{xylabel}padding') bbox_style = self.labels_bbox_style.copy() if "bbox" in label_style: bbox_style.update(label_style["bbox"]) label_style["bbox"] = bbox_style formatter.set_locs(line_ticks) for line_coords, tick_value in zip(lines, line_ticks): # Intersection of line with map boundary line_coords = crs_transform(line_coords) infs = np.isnan(line_coords).any(axis=1) line_coords = line_coords.compress(~infs, axis=0) if line_coords.size == 0: continue line = sgeom.LineString(line_coords) if not line.intersects(map_boundary): continue intersection = line.intersection(map_boundary) del line if intersection.is_empty: continue if isinstance(intersection, sgeom.MultiPoint): if len(intersection) < 2: continue n2 = min(len(intersection), 3) tails = [[(pt.x, pt.y) for pt in intersection[:n2:n2 - 1]]] heads = [[(pt.x, pt.y) for pt in intersection[-1:-n2 - 1:-n2 + 1]]] elif isinstance(intersection, (sgeom.LineString, sgeom.MultiLineString)): if isinstance(intersection, sgeom.LineString): intersection = [intersection] elif len(intersection.geoms) > 4: # Gridline and map boundary are parallel and they # intersect themselves too much it results in a # multiline string that must be converted to a single # linestring. This is an empirical workaround for a # problem that can probably be solved in a cleaner way. xy = np.append( intersection.geoms[0].coords, intersection.geoms[-1].coords, axis=0, ) intersection = [sgeom.LineString(xy)] else: intersection = intersection.geoms tails = [] heads = [] for inter in intersection: if len(inter.coords) < 2: continue n2 = min(len(inter.coords), 8) tails.append(inter.coords[:n2:n2 - 1]) heads.append(inter.coords[-1:-n2 - 1:-n2 + 1]) if not tails: continue elif isinstance(intersection, sgeom.GeometryCollection): # This is a collection of Point and LineString that # represent the same gridline. We only consider the first # geometries, merge their coordinates and keep first two # points to get only one tail ... xy = [] for geom in intersection.geoms: for coord in geom.coords: xy.append(coord) if len(xy) == 2: break if len(xy) == 2: break tails = [xy] # ... and the last geometries, merge their coordinates and # keep last two points to get only one head. xy = [] for geom in reversed(intersection.geoms): for coord in reversed(geom.coords): xy.append(coord) if len(xy) == 2: break if len(xy) == 2: break heads = [xy] else: warnings.warn( 'Unsupported intersection geometry for gridline ' f'labels: {intersection.__class__.__name__}') continue del intersection # Loop on head and tail and plot label by extrapolation for i, (pt0, pt1) in itertools.chain.from_iterable( enumerate(pair) for pair in zip(tails, heads)): # Initial text specs x0, y0 = pt0 if x_inline or y_inline: kw = {'rotation': 0, 'transform': self.crs, 'ha': 'center', 'va': 'center'} loc = 'inline' else: x1, y1 = pt1 segment_angle = np.arctan2(y0 - y1, x0 - x1) * 180 / np.pi loc = self._get_loc_from_spine_intersection( spines_specs, xylabel, x0, y0) if not self._draw_this_label(xylabel, loc): visible = False kw = self._get_text_specs(segment_angle, loc, xylabel) kw['transform'] = self._get_padding_transform( segment_angle, loc, xylabel) kw.update(label_style) # Get x and y in data coords pt0 = inverse_data_transform(pt0) if y_inline: # 180 degrees isn't formatted with a suffix and adds # confusion if it's inline. if abs(tick_value) == 180: continue x = x_midpoints[i] y = tick_value kw.update(clip_on=True) y_set = True else: x = pt0[0] y_set = False if x_inline: if abs(tick_value) == 180: continue x = tick_value y = y_midpoints[i] kw.update(clip_on=True) elif not y_set: y = pt0[1] # Add text to the plot text = formatter(tick_value) artist = self.axes.text(x, y, text, **kw) # Update loc from spine overlapping now that we have a bbox # of the label. this_path = update_artist(artist, renderer) if not x_inline and not y_inline and loc == 'geo': new_loc = self._get_loc_from_spine_overlapping( spines_specs, xylabel, this_path) if new_loc and loc != new_loc: loc = new_loc transform = self._get_padding_transform( segment_angle, loc, xylabel) artist.set_transform(transform) artist.update( self._get_text_specs( segment_angle, loc, xylabel)) artist.update(label_style.copy()) this_path = update_artist(artist, renderer) # Is this kind label allowed to be drawn? if not self._draw_this_label(xylabel, loc): visible = False elif x_inline or y_inline: # Check that it does not overlap the map. # Inline must be within the map. # TODO: When Matplotlib clip path works on text, this # clipping can be left to it. center = (artist .get_transform() .transform_point(artist.get_position())) visible = map_boundary_path.contains_point(center) else: # Now loop on padding factors until it does not overlap # the boundary. visible = False padding_factor = 1 while padding_factor < max_padding_factor: # Non-inline must not run through the outline. if map_boundary_path.intersects_path( this_path, filled=padding > 0): # Apply new padding. transform = self._get_padding_transform( segment_angle, loc, xylabel, padding_factor) artist.set_transform(transform) this_path = update_artist(artist, renderer) padding_factor += delta_padding_factor else: visible = True break # Updates label = Label(artist, this_path, xylabel, loc) label.set_visible(visible) self._labels.append(label) # Now check overlapping of ordered visible labels if self._labels: self._labels.sort( key=operator.attrgetter("priority"), reverse=True) visible_labels = [] for label in self._labels: if label.get_visible(): for other_label in visible_labels: if label.check_overlapping(other_label): break else: visible_labels.append(label) def _get_loc_from_angle(self, angle): angle %= 360 if angle > 180: angle -= 360 if abs(angle) <= 45: loc = 'right' elif abs(angle) >= 135: loc = 'left' elif angle > 45: loc = 'top' else: # (-135, -45) loc = 'bottom' return loc def _get_loc_from_spine_overlapping( self, spines_specs, xylabel, label_path): """Try to get the location from side spines and label path Returns None if it does not apply For instance, for each side, if any of label_path x coordinates are beyond this side, the distance to this side is computed. If several sides are matching (max 2), then the one with a greater distance is kept. This helps finding the side of labels for non-rectangular projection with a rectangular map boundary. """ side_max = dist_max = None for side, specs in spines_specs.items(): if specs['coord_type'] == xylabel: continue label_coords = label_path.vertices[:-1, specs['index']] spine_coord = specs['opval'](specs['coords']) if not specs['opcmp'](label_coords, spine_coord).any(): continue if specs['opcmp'] is operator.ge: # top, right dist = label_coords.min() - spine_coord else: dist = spine_coord - label_coords.max() if side_max is None or dist > dist_max: side_max = side dist_max = dist if side_max is None: return "geo" return side_max def _get_loc_from_spine_intersection(self, spines_specs, xylabel, x, y): """Get the loc the intersection of a gridline with a spine Defaults to "geo". """ if xylabel == "x": sides = ["bottom", "top", "left", "right"] else: sides = ["left", "right", "bottom", "top"] for side in sides: xy = x if side in ["left", "right"] else y coords = np.round(spines_specs[side]["coords"], 2) if round(xy, 2) in coords: return side return "geo" def _get_text_specs(self, angle, loc, xylabel): """Get rotation and alignments specs for a single label""" # Angle from -180 to 180 if angle > 180: angle -= 360 # Fake for geo spine if loc == "geo": loc = self._get_loc_from_angle(angle) # Check rotation if not self.rotate_labels: # No rotation kw = {'rotation': 0, "ha": "center", "va": "center"} if loc == 'right': kw.update(ha='left') elif loc == 'left': kw.update(ha='right') elif loc == 'top': kw.update(va='bottom') elif loc == 'bottom': kw.update(va='top') else: # Rotation along gridlines if (isinstance(self.rotate_labels, (float, int)) and not isinstance(self.rotate_labels, bool)): angle = self.rotate_labels kw = {'rotation': angle, 'rotation_mode': 'anchor', 'va': 'center'} if (angle < 90 + self.offset_angle and angle > -90 + self.offset_angle): kw.update(ha="left", rotation=angle) else: kw.update(ha="right", rotation=angle + 180) # Inside labels if getattr(self, xylabel + "padding") < 0: if "ha" in kw: if kw["ha"] == "left": kw["ha"] = "right" elif kw["ha"] == "right": kw["ha"] = "left" if "va" in kw: if kw["va"] == "top": kw["va"] = "bottom" elif kw["va"] == "bottom": kw["va"] = "top" return kw def _get_padding_transform( self, padding_angle, loc, xylabel, padding_factor=1): """Get transform from angle and padding for non-inline labels""" # No rotation if self.rotate_labels is False and loc != "geo": padding_angle = { 'top': 90., 'right': 0., 'bottom': -90., 'left': 180.}[loc] # Padding if xylabel == "x": padding = (self.xpadding if self.xpadding is not None else matplotlib.rcParams['xtick.major.pad']) else: padding = (self.ypadding if self.ypadding is not None else matplotlib.rcParams['ytick.major.pad']) dx = padding_factor * padding * np.cos(padding_angle * np.pi / 180) dy = padding_factor * padding * np.sin(padding_angle * np.pi / 180) # Final transform return mtrans.offset_copy( self.axes.transData, fig=self.axes.figure, x=dx, y=dy, units='points') def _assert_can_draw_ticks(self): """ Check to see if ticks can be drawn. Either returns True or raises an exception. """ # Check labelling is supported, currently a limited set of options. if not isinstance(self.crs, PlateCarree): raise TypeError(f'Cannot label {self.crs.__class__.__name__} ' 'gridlines. Only PlateCarree gridlines are ' 'currently supported.') return True def _axes_domain(self, nx=None, ny=None): """Return lon_range, lat_range""" DEBUG = False transform = self._crs_transform() ax_transform = self.axes.transAxes desired_trans = ax_transform - transform nx = nx or 100 ny = ny or 100 x = np.linspace(1e-9, 1 - 1e-9, nx) y = np.linspace(1e-9, 1 - 1e-9, ny) x, y = np.meshgrid(x, y) coords = np.column_stack((x.ravel(), y.ravel())) in_data = desired_trans.transform(coords) ax_to_bkg_patch = self.axes.transAxes - self.axes.patch.get_transform() # convert the coordinates of the data to the background patches # coordinates background_coord = ax_to_bkg_patch.transform(coords) ok = self.axes.patch.get_path().contains_points(background_coord) if DEBUG: import matplotlib.pyplot as plt plt.plot(coords[ok, 0], coords[ok, 1], 'or', clip_on=False, transform=ax_transform) plt.plot(coords[~ok, 0], coords[~ok, 1], 'ob', clip_on=False, transform=ax_transform) inside = in_data[ok, :] # If there were no data points in the axes we just use the x and y # range of the projection. if inside.size == 0: lon_range = self.crs.x_limits lat_range = self.crs.y_limits else: # np.isfinite must be used to prevent np.inf values that # not filtered by np.nanmax for some projections lat_max = np.compress(np.isfinite(inside[:, 1]), inside[:, 1]) if lat_max.size == 0: lon_range = self.crs.x_limits lat_range = self.crs.y_limits else: lat_max = lat_max.max() lon_range = np.nanmin(inside[:, 0]), np.nanmax(inside[:, 0]) lat_range = np.nanmin(inside[:, 1]), lat_max # XXX Cartopy specific thing. Perhaps make this bit a specialisation # in a subclass... crs = self.crs if isinstance(crs, Projection): lon_range = np.clip(lon_range, *crs.x_limits) lat_range = np.clip(lat_range, *crs.y_limits) # if the limit is >90% of the full x limit, then just use the full # x limit (this makes circular handling better) prct = np.abs(np.diff(lon_range) / np.diff(crs.x_limits)) if prct > 0.9: lon_range = crs.x_limits if self.xlim is not None: if np.iterable(self.xlim): # tuple, list or ndarray was passed in: (-140, 160) lon_range = self.xlim else: # A single int/float was passed in: 140 lon_range = (-self.xlim, self.xlim) if self.ylim is not None: if np.iterable(self.ylim): # tuple, list or ndarray was passed in: (-140, 160) lat_range = self.ylim else: # A single int/float was passed in: 140 lat_range = (-self.ylim, self.ylim) return lon_range, lat_range
class Label: """Helper class to manage the attributes for a single label""" def __init__(self, artist, path, xy, loc): self.artist = artist self.loc = loc self.path = path self.xy = xy self.priority = loc in ["left", "right", "top", "bottom"] def set_visible(self, value): self.artist.set_visible(value) def get_visible(self): return self.artist.get_visible() def check_overlapping(self, label): overlapping = self.path.intersects_path(label.path) if overlapping: self.set_visible(False) return overlapping