Logo Iris 1.7

Previous topic

Plotting in different projections

Next topic

Iris developer guide

This Page

Rotated pole mappingΒΆ

This example uses several visualisation methods to achieve an array of differing images, including:

  • Visualisation of point based data
  • Contouring of point based data
  • Block plot of contiguous bounded data
  • Non native projection and a Natural Earth shaded relief image underlay

[source code]

../../_images/rotated_pole_mapping_00.png

[source code]

../../_images/rotated_pole_mapping_01.png

[source code]

../../_images/rotated_pole_mapping_02.png

[source code]

../../_images/rotated_pole_mapping_03.png
"""
Rotated pole mapping
=====================

This example uses several visualisation methods to achieve an array of
differing images, including:

 * Visualisation of point based data
 * Contouring of point based data
 * Block plot of contiguous bounded data
 * Non native projection and a Natural Earth shaded relief image underlay

"""
import cartopy.crs as ccrs
import matplotlib.pyplot as plt

import iris
import iris.plot as iplt
import iris.quickplot as qplt
import iris.analysis.cartography


def main():
    fname = iris.sample_data_path('rotated_pole.nc')
    air_pressure = iris.load_cube(fname)

    # Plot #1: Point plot showing data values & a colorbar
    plt.figure()
    points = qplt.points(air_pressure, c=air_pressure.data)
    cb = plt.colorbar(points, orientation='horizontal')
    cb.set_label(air_pressure.units)
    plt.gca().coastlines()
    plt.show()

    # Plot #2: Contourf of the point based data
    plt.figure()
    qplt.contourf(air_pressure, 15)
    plt.gca().coastlines()
    plt.show()

    # Plot #3: Contourf overlayed by coloured point data
    plt.figure()
    qplt.contourf(air_pressure)
    iplt.points(air_pressure, c=air_pressure.data)
    plt.gca().coastlines()
    plt.show()

    # For the purposes of this example, add some bounds to the latitude
    # and longitude
    air_pressure.coord('grid_latitude').guess_bounds()
    air_pressure.coord('grid_longitude').guess_bounds()

    # Plot #4: Block plot
    plt.figure()
    plt.axes(projection=ccrs.PlateCarree())
    iplt.pcolormesh(air_pressure)
    plt.gca().stock_img()
    plt.gca().coastlines()
    plt.show()


if __name__ == '__main__':
    main()