# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
"""
Cartopy can produce gridlines and ticks in any projection and add
them to the current geoaxes projection, providing a way to add detailed
location information to the plots.
"""
import inspect
import itertools
import operator
import warnings
import matplotlib
import matplotlib.artist
import matplotlib.collections as mcollections
import matplotlib.text
import matplotlib.ticker as mticker
import matplotlib.transforms as mtrans
import numpy as np
import shapely.geometry as sgeom
import cartopy
from cartopy.crs import PlateCarree, Projection, _RectangularProjection
from cartopy.mpl.ticker import (
LatitudeFormatter,
LatitudeLocator,
LongitudeFormatter,
LongitudeLocator,
)
degree_locator = mticker.MaxNLocator(nbins=9, steps=[1, 1.5, 1.8, 2, 3, 6, 10])
classic_locator = mticker.MaxNLocator(nbins=9)
classic_formatter = mticker.ScalarFormatter
_X_INLINE_PROJS = (
cartopy.crs.InterruptedGoodeHomolosine,
cartopy.crs.LambertConformal,
cartopy.crs.Mollweide,
cartopy.crs.Sinusoidal,
cartopy.crs.RotatedPole,
)
_POLAR_PROJS = (
cartopy.crs.NorthPolarStereo,
cartopy.crs.SouthPolarStereo,
cartopy.crs.Stereographic
)
_ROTATE_LABEL_PROJS = _POLAR_PROJS + (
cartopy.crs.AlbersEqualArea,
cartopy.crs.AzimuthalEquidistant,
cartopy.crs.EquidistantConic,
cartopy.crs.LambertConformal,
cartopy.crs.TransverseMercator,
cartopy.crs.Gnomonic,
cartopy.crs.ObliqueMercator,
)
def _lon_hemisphere(longitude):
"""Return the hemisphere (E, W or '' for 0) for the given longitude."""
# Wrap the longitude to the range -180 to 180, keeping positive 180s
lon_wrapped = ((longitude + 180) % 360) - 180
longitude = 180 if (longitude > 0 and lon_wrapped == -180) else lon_wrapped
if longitude > 0:
hemisphere = 'E'
elif longitude < 0:
hemisphere = 'W'
else:
hemisphere = ''
return hemisphere
def _lat_hemisphere(latitude):
"""Return the hemisphere (N, S or '' for 0) for the given latitude."""
if latitude > 0:
hemisphere = 'N'
elif latitude < 0:
hemisphere = 'S'
else:
hemisphere = ''
return hemisphere
def _east_west_formatted(longitude, num_format='g'):
hemisphere = _lon_hemisphere(longitude)
return f'{abs(longitude):{num_format}}\N{Degree Sign}{hemisphere}'
def _north_south_formatted(latitude, num_format='g'):
hemisphere = _lat_hemisphere(latitude)
return f'{abs(latitude):{num_format}}\N{Degree Sign}{hemisphere}'
#: A formatter which turns longitude values into nice longitudes such as 110W
LONGITUDE_FORMATTER = mticker.FuncFormatter(lambda v, pos:
_east_west_formatted(v))
#: A formatter which turns longitude values into nice longitudes such as 45S
LATITUDE_FORMATTER = mticker.FuncFormatter(lambda v, pos:
_north_south_formatted(v))
[docs]
class Gridliner(matplotlib.artist.Artist):
def __init__(self, axes, crs, draw_labels=False, xlocator=None,
ylocator=None, collection_kwargs=None,
xformatter=None, yformatter=None, dms=False,
x_inline=None, y_inline=None, auto_inline=True,
xlim=None, ylim=None, rotate_labels=None,
xlabel_style=None, ylabel_style=None, labels_bbox_style=None,
xpadding=5, ypadding=5, offset_angle=25,
auto_update=None, formatter_kwargs=None):
"""
Artist used by :meth:`cartopy.mpl.geoaxes.GeoAxes.gridlines`
to add gridlines and tick labels to a map.
Parameters
----------
axes
The :class:`cartopy.mpl.geoaxes.GeoAxes` object to be drawn on.
crs
The :class:`cartopy.crs.CRS` defining the coordinate system that
the gridlines are drawn in.
draw_labels: optional
Toggle whether to draw labels. For finer control, attributes of
:class:`Gridliner` may be modified individually. Defaults to False.
- string: "x" or "y" to only draw labels of the respective
coordinate in the CRS.
- list: Can contain the side identifiers and/or coordinate
types to select which ones to draw.
For all labels one would use
`["x", "y", "top", "bottom", "left", "right", "geo"]`.
- dict: The keys are the side identifiers
("top", "bottom", "left", "right") and the values are the
coordinates ("x", "y"); this way you can precisely
decide what kind of label to draw and where.
For x labels on the bottom and y labels on the right you
could pass in `{"bottom": "x", "left": "y"}`.
Note that, by default, x and y labels are not drawn on left/right
and top/bottom edges respectively, unless explicitly requested.
xlocator: optional
A :class:`matplotlib.ticker.Locator` instance which will be used
to determine the locations of the gridlines in the x-coordinate of
the given CRS. Defaults to None, which implies automatic locating
of the gridlines.
ylocator: optional
A :class:`matplotlib.ticker.Locator` instance which will be used
to determine the locations of the gridlines in the y-coordinate of
the given CRS. Defaults to None, which implies automatic locating
of the gridlines.
xformatter: optional
A :class:`matplotlib.ticker.Formatter` instance to format labels
for x-coordinate gridlines. It defaults to None, which implies the
use of a :class:`cartopy.mpl.ticker.LongitudeFormatter` initiated
with the ``dms`` argument, if the crs is of
:class:`~cartopy.crs.PlateCarree` type.
yformatter: optional
A :class:`matplotlib.ticker.Formatter` instance to format labels
for y-coordinate gridlines. It defaults to None, which implies the
use of a :class:`cartopy.mpl.ticker.LatitudeFormatter` initiated
with the ``dms`` argument, if the crs is of
:class:`~cartopy.crs.PlateCarree` type.
collection_kwargs: optional
Dictionary controlling line properties, passed to
:class:`matplotlib.collections.Collection`. Defaults to None.
dms: bool
When default locators and formatters are used,
ticks are able to stop on minutes and seconds if minutes
is set to True, and not fraction of degrees.
x_inline: optional
Toggle whether the x labels drawn should be inline.
y_inline: optional
Toggle whether the y labels drawn should be inline.
auto_inline: optional
Set x_inline and y_inline automatically based on projection.
xlim: optional
Set a limit for the gridlines so that they do not go all the
way to the edge of the boundary. xlim can be a single number or
a (min, max) tuple. If a single number, the limits will be
(-xlim, +xlim).
ylim: optional
Set a limit for the gridlines so that they do not go all the
way to the edge of the boundary. ylim can be a single number or
a (min, max) tuple. If a single number, the limits will be
(-ylim, +ylim).
rotate_labels: optional, bool, str
Allow the rotation of non-inline labels.
- False: Do not rotate the labels.
- True: Rotate the labels parallel to the gridlines.
- None: no rotation except for some projections (default).
- A float: Rotate labels by this value in degrees.
xlabel_style: dict
A dictionary passed through to ``ax.text`` on x label creation
for styling of the text labels.
ylabel_style: dict
A dictionary passed through to ``ax.text`` on y label creation
for styling of the text labels.
labels_bbox_style: dict
bbox style for all text labels
xpadding: float
Padding for x labels. If negative, the labels are
drawn inside the map.
ypadding: float
Padding for y labels. If negative, the labels are
drawn inside the map.
offset_angle: float
Difference of angle in degrees from 90 to define when
a label must be flipped to be more readable.
For example, a value of 10 makes a vertical top label to be
flipped only at 100 degrees.
auto_update: bool, default=True
Whether to redraw the gridlines and labels when the figure is
updated.
.. deprecated:: 0.23
In future the gridlines and labels will always be redrawn.
formatter_kwargs: dict, optional
Options passed to the default formatters.
See :class:`~cartopy.mpl.ticker.LongitudeFormatter` and
:class:`~cartopy.mpl.ticker.LatitudeFormatter`
Notes
-----
The "x" and "y" labels for locators and formatters do not necessarily
correspond to X and Y, but to the first and second coordinates of the
specified CRS. For the common case of PlateCarree gridlines, these
correspond to longitudes and latitudes. Depending on the projection
used for the map, meridians and parallels can cross both the X axis and
the Y axis.
"""
super().__init__()
# We do not want the labels clipped to axes.
self.set_clip_on(False)
# Backcompat: the LineCollection was previously added directly to the
# axes, having a default zorder of 2.
self.set_zorder(2)
#: The :class:`~matplotlib.ticker.Locator` to use for the x
#: gridlines and labels.
if xlocator is not None:
if not isinstance(xlocator, mticker.Locator):
xlocator = mticker.FixedLocator(xlocator)
self.xlocator = xlocator
elif isinstance(crs, PlateCarree):
self.xlocator = LongitudeLocator(dms=dms)
else:
self.xlocator = classic_locator
#: The :class:`~matplotlib.ticker.Locator` to use for the y
#: gridlines and labels.
if ylocator is not None:
if not isinstance(ylocator, mticker.Locator):
ylocator = mticker.FixedLocator(ylocator)
self.ylocator = ylocator
elif isinstance(crs, PlateCarree):
self.ylocator = LatitudeLocator(dms=dms)
else:
self.ylocator = classic_locator
formatter_kwargs = {
**(formatter_kwargs or {}),
"dms": dms,
}
if xformatter is None:
if isinstance(crs, PlateCarree):
xformatter = LongitudeFormatter(**formatter_kwargs)
else:
xformatter = classic_formatter()
#: The :class:`~matplotlib.ticker.Formatter` to use for the lon labels.
self.xformatter = xformatter
if yformatter is None:
if isinstance(crs, PlateCarree):
yformatter = LatitudeFormatter(**formatter_kwargs)
else:
yformatter = classic_formatter()
#: The :class:`~matplotlib.ticker.Formatter` to use for the lat labels.
self.yformatter = yformatter
# Draw label argument
if isinstance(draw_labels, list):
# Select to which coordinate it is applied
if 'x' not in draw_labels and 'y' not in draw_labels:
value = True
elif 'x' in draw_labels and 'y' in draw_labels:
value = ['x', 'y']
elif 'x' in draw_labels:
value = 'x'
else:
value = 'y'
#: Whether to draw labels on the top of the map.
self.top_labels = value if 'top' in draw_labels else False
#: Whether to draw labels on the bottom of the map.
self.bottom_labels = value if 'bottom' in draw_labels else False
#: Whether to draw labels on the left hand side of the map.
self.left_labels = value if 'left' in draw_labels else False
#: Whether to draw labels on the right hand side of the map.
self.right_labels = value if 'right' in draw_labels else False
#: Whether to draw labels near the geographic limits of the map.
self.geo_labels = value if 'geo' in draw_labels else False
elif isinstance(draw_labels, dict):
self.top_labels = draw_labels.get('top', False)
self.bottom_labels = draw_labels.get('bottom', False)
self.left_labels = draw_labels.get('left', False)
self.right_labels = draw_labels.get('right', False)
self.geo_labels = draw_labels.get('geo', False)
else:
self.top_labels = draw_labels
self.bottom_labels = draw_labels
self.left_labels = draw_labels
self.right_labels = draw_labels
self.geo_labels = draw_labels
for loc in 'top', 'bottom', 'left', 'right', 'geo':
value = getattr(self, f'{loc}_labels')
if isinstance(value, str):
value = value.lower()
if (not isinstance(value, (list, bool)) and
value not in ('x', 'y')):
raise ValueError(f"Invalid draw_labels argument: {value}")
if auto_inline:
if isinstance(axes.projection, _X_INLINE_PROJS):
self.x_inline = True
self.y_inline = False
elif isinstance(axes.projection, _POLAR_PROJS):
self.x_inline = False
self.y_inline = True
else:
self.x_inline = False
self.y_inline = False
# overwrite auto_inline if necessary
if x_inline is not None:
#: Whether to draw x labels inline
self.x_inline = x_inline
elif not auto_inline:
self.x_inline = False
if y_inline is not None:
#: Whether to draw y labels inline
self.y_inline = y_inline
elif not auto_inline:
self.y_inline = False
# Apply inline args
if not draw_labels:
self.inline_labels = False
elif self.x_inline and self.y_inline:
self.inline_labels = True
elif self.x_inline:
self.inline_labels = "x"
elif self.y_inline:
self.inline_labels = "y"
else:
self.inline_labels = False
# Gridline limits so that the gridlines don't extend all the way
# to the edge of the boundary
self.xlim = xlim
self.ylim = ylim
#: Whether to draw the x gridlines.
self.xlines = True
#: Whether to draw the y gridlines.
self.ylines = True
#: A dictionary passed through to ``ax.text`` on x label creation
#: for styling of the text labels.
self.xlabel_style = xlabel_style or {}
#: A dictionary passed through to ``ax.text`` on y label creation
#: for styling of the text labels.
self.ylabel_style = ylabel_style or {}
#: bbox style for grid labels
self.labels_bbox_style = (
labels_bbox_style or {'pad': 0, 'visible': False})
#: The padding from the map edge to the x labels in points.
self.xpadding = xpadding
#: The padding from the map edge to the y labels in points.
self.ypadding = ypadding
#: Control the rotation of labels.
if rotate_labels is None:
rotate_labels = (
axes.projection.__class__ in _ROTATE_LABEL_PROJS)
if not isinstance(rotate_labels, (bool, float, int)):
raise ValueError("Invalid rotate_labels argument")
self.rotate_labels = rotate_labels
self.offset_angle = offset_angle
# Current transform
self.crs = crs
# if the user specifies tick labels at this point, check if they can
# be drawn. The same check will take place at draw time in case
# public attributes are changed after instantiation.
if draw_labels and not (x_inline or y_inline or auto_inline):
self._assert_can_draw_ticks()
#: The number of interpolation points which are used to draw the
#: gridlines.
self.n_steps = 100
#: A dictionary passed through to
#: ``matplotlib.collections.LineCollection`` on grid line creation.
self.collection_kwargs = collection_kwargs
#: The x gridlines which were created at draw time.
self.xline_artists = []
#: The y gridlines which were created at draw time.
self.yline_artists = []
# List of all labels (Label objects)
self._all_labels = []
# List of active labels (used in current draw)
self._labels = []
# Draw status
self._drawn = False
if auto_update is None:
auto_update = True
else:
# Note #2394 should be addressed before this deprecation expires.
calling_module = inspect.stack()[1].filename
warnings.warn(
"The auto_update parameter was deprecated at Cartopy 0.23. In future "
"the gridlines and labels will always be updated.",
DeprecationWarning,
stacklevel=(3 if calling_module.endswith('cartopy/mpl/geoaxes.py')
else 2))
self._auto_update = auto_update
def has_labels(self):
return len(self._labels) != 0
@property
def label_artists(self):
"""All the labels which were created at draw time"""
return [label.artist for label in self._labels]
@property
def top_label_artists(self):
"""The top labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "top"]
@property
def bottom_label_artists(self):
"""The bottom labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "bottom"]
@property
def left_label_artists(self):
"""The left labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "left"]
@property
def right_label_artists(self):
"""The right labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "right"]
@property
def geo_label_artists(self):
"""The geo spine labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "geo"]
@property
def x_inline_label_artists(self):
"""The x-coordinate inline labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "x_inline"]
@property
def y_inline_label_artists(self):
"""The y-coordinate inline labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "y_inline"]
@property
def xlabel_artists(self):
"""The x-coordinate labels which were created at draw time"""
return [label.artist for label in self._labels
if label.xy == "x"]
@property
def ylabel_artists(self):
"""The y-coordinate labels which were created at draw time"""
return [label.artist for label in self._labels
if label.xy == "y"]
def _crs_transform(self):
"""
Get the drawing transform for our gridlines.
Note
----
The drawing transform depends on the transform of our 'axes', so
it may change dynamically.
"""
transform = self.crs
if not isinstance(transform, mtrans.Transform):
transform = transform._as_mpl_transform(self.axes)
return transform
@staticmethod
def _round(x, base=5):
if np.isnan(base):
base = 5
return int(base * round(x / base))
def _find_midpoints(self, lim, ticks):
# Find the center point between each lat gridline.
if len(ticks) > 1:
cent = np.diff(ticks).mean() / 2
else:
cent = np.nan
if isinstance(self.axes.projection, _POLAR_PROJS):
lq = 90
uq = 90
else:
lq = 25
uq = 75
midpoints = (self._round(np.percentile(lim, lq), cent),
self._round(np.percentile(lim, uq), cent))
return midpoints
def _draw_this_label(self, xylabel, loc):
"""Should I draw this kind of label here?"""
draw_labels = getattr(self, loc + '_labels')
# By default, only x on top/bottom and only y on left/right
if draw_labels is True and loc != 'geo':
draw_labels = "x" if loc in ["top", "bottom"] else "y"
# Don't draw
if not draw_labels:
return False
# Explicit x or y
if isinstance(draw_labels, str):
draw_labels = [draw_labels]
# Explicit list of x and/or y
if isinstance(draw_labels, list) and xylabel not in draw_labels:
return False
return True
def _generate_labels(self):
"""
A generator to yield as many labels as needed, re-using existing ones
where possible.
"""
for label in self._all_labels:
yield label
while True:
# Ran out of existing labels. Create some empty ones.
new_artist = matplotlib.text.Text()
new_artist.set_figure(self.axes.figure)
new_artist.axes = self.axes
new_label = Label(new_artist, None, None, None)
self._all_labels.append(new_label)
yield new_label
def _draw_gridliner(self, nx=None, ny=None, renderer=None):
"""Create Artists for all visible elements and add to our Axes.
The following rules apply for the visibility of labels:
- X-type labels are plotted along the bottom, top and geo spines.
- Y-type labels are plotted along the left, right and geo spines.
- A label must not overlap another label marked as visible.
- A label must not overlap the map boundary.
- When a label is about to be hidden, its padding is slightly
increase until it can be drawn or until a padding limit is reached.
"""
# Update only when needed or requested
if self._drawn and not self._auto_update:
return
self._drawn = True
# Inits
lon_lim, lat_lim = self._axes_domain(nx=nx, ny=ny)
transform = self._crs_transform()
n_steps = self.n_steps
crs = self.crs
# Get nice ticks within crs domain
lon_ticks = self.xlocator.tick_values(lon_lim[0], lon_lim[1])
lat_ticks = self.ylocator.tick_values(lat_lim[0], lat_lim[1])
inf = max(lon_lim[0], crs.x_limits[0])
sup = min(lon_lim[1], crs.x_limits[1])
lon_ticks = [value for value in lon_ticks if inf <= value <= sup]
inf = max(lat_lim[0], crs.y_limits[0])
sup = min(lat_lim[1], crs.y_limits[1])
lat_ticks = [value for value in lat_ticks if inf <= value <= sup]
#####################
# Gridlines drawing #
#####################
collection_kwargs = self.collection_kwargs
if collection_kwargs is None:
collection_kwargs = {}
collection_kwargs = collection_kwargs.copy()
collection_kwargs['transform'] = transform
if not any(x in collection_kwargs for x in ['c', 'color']):
collection_kwargs.setdefault('color',
matplotlib.rcParams['grid.color'])
if not any(x in collection_kwargs for x in ['ls', 'linestyle']):
collection_kwargs.setdefault('linestyle',
matplotlib.rcParams['grid.linestyle'])
if not any(x in collection_kwargs for x in ['lw', 'linewidth']):
collection_kwargs.setdefault('linewidth',
matplotlib.rcParams['grid.linewidth'])
collection_kwargs.setdefault('clip_path', self.axes.patch)
# Meridians
lat_min, lat_max = lat_lim
if lat_ticks:
lat_min = min(lat_min, min(lat_ticks))
lat_max = max(lat_max, max(lat_ticks))
lon_lines = np.empty((len(lon_ticks), n_steps, 2))
lon_lines[:, :, 0] = np.array(lon_ticks)[:, np.newaxis]
lon_lines[:, :, 1] = np.linspace(
lat_min, lat_max, n_steps)[np.newaxis, :]
if self.xlines:
nx = len(lon_lines) + 1
# XXX this bit is cartopy specific. (for circular longitudes)
# Purpose: omit plotting the last x line,
# as it may overlap the first.
if (isinstance(crs, Projection) and
isinstance(crs, _RectangularProjection) and
abs(np.diff(lon_lim)) == abs(np.diff(crs.x_limits))):
nx -= 1
if self.xline_artists:
# Update existing collection.
lon_lc, = self.xline_artists
lon_lc.set(segments=lon_lines, **collection_kwargs)
else:
# Create new collection.
lon_lc = mcollections.LineCollection(lon_lines,
**collection_kwargs)
self.xline_artists.append(lon_lc)
# Parallels
lon_min, lon_max = lon_lim
if lon_ticks:
lon_min = min(lon_min, min(lon_ticks))
lon_max = max(lon_max, max(lon_ticks))
lat_lines = np.empty((len(lat_ticks), n_steps, 2))
lat_lines[:, :, 0] = np.linspace(lon_min, lon_max,
n_steps)[np.newaxis, :]
lat_lines[:, :, 1] = np.array(lat_ticks)[:, np.newaxis]
if self.ylines:
if self.yline_artists:
# Update existing collection.
lat_lc, = self.yline_artists
lat_lc.set(segments=lat_lines, **collection_kwargs)
else:
lat_lc = mcollections.LineCollection(lat_lines,
**collection_kwargs)
self.yline_artists.append(lat_lc)
#################
# Label drawing #
#################
# Clear drawn labels
self._labels.clear()
if not any((self.left_labels, self.right_labels, self.bottom_labels,
self.top_labels, self.inline_labels, self.geo_labels)):
return
self._assert_can_draw_ticks()
# Inits for labels
max_padding_factor = 5
delta_padding_factor = 0.2
spines_specs = {
'left': {
'index': 0,
'coord_type': "x",
'opcmp': operator.le,
'opval': max,
},
'bottom': {
'index': 1,
'coord_type': "y",
'opcmp': operator.le,
'opval': max,
},
'right': {
'index': 0,
'coord_type': "x",
'opcmp': operator.ge,
'opval': min,
},
'top': {
'index': 1,
'coord_type': "y",
'opcmp': operator.ge,
'opval': min,
},
}
for side, specs in spines_specs.items():
bbox = self.axes.spines[side].get_window_extent(renderer)
specs['coords'] = [
getattr(bbox, specs['coord_type'] + idx) for idx in "01"]
def update_artist(artist, renderer):
artist.update_bbox_position_size(renderer)
this_patch = artist.get_bbox_patch()
this_path = this_patch.get_path().transformed(
this_patch.get_transform())
return this_path
# Get the real map boundaries
self.axes.spines["geo"].get_window_extent(renderer) # update coords
map_boundary_path = self.axes.spines["geo"].get_path().transformed(
self.axes.spines["geo"].get_transform())
map_boundary = sgeom.Polygon(map_boundary_path.vertices)
if self.x_inline:
y_midpoints = self._find_midpoints(lat_lim, lat_ticks)
if self.y_inline:
x_midpoints = self._find_midpoints(lon_lim, lon_ticks)
# Cache a few things so they aren't re-calculated in the loops.
crs_transform = self._crs_transform().transform
inverse_data_transform = self.axes.transData.inverted().transform_point
# Create a generator for the Label objects.
generate_labels = self._generate_labels()
for xylabel, lines, line_ticks, formatter, label_style in (
('x', lon_lines, lon_ticks,
self.xformatter, self.xlabel_style.copy()),
('y', lat_lines, lat_ticks,
self.yformatter, self.ylabel_style.copy())):
x_inline = self.x_inline and xylabel == 'x'
y_inline = self.y_inline and xylabel == 'y'
padding = getattr(self, f'{xylabel}padding')
bbox_style = self.labels_bbox_style.copy()
if "bbox" in label_style:
bbox_style.update(label_style["bbox"])
label_style["bbox"] = bbox_style
formatter.set_locs(line_ticks)
for line_coords, tick_value in zip(lines, line_ticks):
# Intersection of line with map boundary
line_coords = crs_transform(line_coords)
infs = np.isnan(line_coords).any(axis=1)
line_coords = line_coords.compress(~infs, axis=0)
if line_coords.size == 0:
continue
line = sgeom.LineString(line_coords)
if not line.intersects(map_boundary):
continue
intersection = line.intersection(map_boundary)
del line
if intersection.is_empty:
continue
if isinstance(intersection, sgeom.MultiPoint):
if len(intersection) < 2:
continue
n2 = min(len(intersection), 3)
tails = [[(pt.x, pt.y)
for pt in intersection[:n2:n2 - 1]]]
heads = [[(pt.x, pt.y)
for pt in intersection[-1:-n2 - 1:-n2 + 1]]]
elif isinstance(intersection, (sgeom.LineString,
sgeom.MultiLineString)):
if isinstance(intersection, sgeom.LineString):
intersection = [intersection]
elif len(intersection.geoms) > 4:
# Gridline and map boundary are parallel and they
# intersect themselves too much it results in a
# multiline string that must be converted to a single
# linestring. This is an empirical workaround for a
# problem that can probably be solved in a cleaner way.
xy = np.append(
intersection.geoms[0].coords,
intersection.geoms[-1].coords,
axis=0,
)
intersection = [sgeom.LineString(xy)]
else:
intersection = intersection.geoms
tails = []
heads = []
for inter in intersection:
if len(inter.coords) < 2:
continue
n2 = min(len(inter.coords), 8)
tails.append(inter.coords[:n2:n2 - 1])
heads.append(inter.coords[-1:-n2 - 1:-n2 + 1])
if not tails:
continue
elif isinstance(intersection, sgeom.GeometryCollection):
# This is a collection of Point and LineString that
# represent the same gridline. We only consider the first
# geometries, merge their coordinates and keep first two
# points to get only one tail ...
xy = []
for geom in intersection.geoms:
for coord in geom.coords:
xy.append(coord)
if len(xy) == 2:
break
if len(xy) == 2:
break
tails = [xy]
# ... and the last geometries, merge their coordinates and
# keep last two points to get only one head.
xy = []
for geom in reversed(intersection.geoms):
for coord in reversed(geom.coords):
xy.append(coord)
if len(xy) == 2:
break
if len(xy) == 2:
break
heads = [xy]
else:
warnings.warn(
'Unsupported intersection geometry for gridline '
f'labels: {intersection.__class__.__name__}')
continue
del intersection
# Loop on head and tail and plot label by extrapolation
for i, (pt0, pt1) in itertools.chain.from_iterable(
enumerate(pair) for pair in zip(tails, heads)):
# Initial text specs
x0, y0 = pt0
if x_inline or y_inline:
kw = {'rotation': 0, 'transform': self.crs,
'ha': 'center', 'va': 'center'}
loc = 'inline'
else:
x1, y1 = pt1
segment_angle = np.arctan2(y0 - y1,
x0 - x1) * 180 / np.pi
loc = self._get_loc_from_spine_intersection(
spines_specs, xylabel, x0, y0)
if not self._draw_this_label(xylabel, loc):
visible = False
kw = self._get_text_specs(segment_angle, loc, xylabel)
kw['transform'] = self._get_padding_transform(
segment_angle, loc, xylabel)
kw.update(label_style)
# Get x and y in data coords
pt0 = inverse_data_transform(pt0)
if y_inline:
# 180 degrees isn't formatted with a suffix and adds
# confusion if it's inline.
if abs(tick_value) == 180:
continue
x = x_midpoints[i]
y = tick_value
kw.update(clip_on=True)
y_set = True
else:
x = pt0[0]
y_set = False
if x_inline:
if abs(tick_value) == 180:
continue
x = tick_value
y = y_midpoints[i]
kw.update(clip_on=True)
elif not y_set:
y = pt0[1]
# Update generated label.
label = next(generate_labels)
text = formatter(tick_value)
artist = label.artist
artist.set(x=x, y=y, text=text, **kw)
# Update loc from spine overlapping now that we have a bbox
# of the label.
this_path = update_artist(artist, renderer)
if not x_inline and not y_inline and loc == 'geo':
new_loc = self._get_loc_from_spine_overlapping(
spines_specs, xylabel, this_path)
if new_loc and loc != new_loc:
loc = new_loc
transform = self._get_padding_transform(
segment_angle, loc, xylabel)
artist.set_transform(transform)
artist.update(
self._get_text_specs(
segment_angle, loc, xylabel))
artist.update(label_style.copy())
this_path = update_artist(artist, renderer)
# Is this kind label allowed to be drawn?
if not self._draw_this_label(xylabel, loc):
visible = False
elif x_inline or y_inline:
# Check that it does not overlap the map.
# Inline must be within the map.
# TODO: When Matplotlib clip path works on text, this
# clipping can be left to it.
center = (artist
.get_transform()
.transform_point(artist.get_position()))
visible = map_boundary_path.contains_point(center)
else:
# Now loop on padding factors until it does not overlap
# the boundary.
visible = False
padding_factor = 1
while padding_factor < max_padding_factor:
# Non-inline must not run through the outline.
if map_boundary_path.intersects_path(
this_path, filled=padding > 0):
# Apply new padding.
transform = self._get_padding_transform(
segment_angle, loc, xylabel,
padding_factor)
artist.set_transform(transform)
this_path = update_artist(artist, renderer)
padding_factor += delta_padding_factor
else:
visible = True
break
# Updates
label.set_visible(visible)
label.path = this_path
label.xy = xylabel
label.loc = loc
self._labels.append(label)
# Now check overlapping of ordered visible labels
if self._labels:
self._labels.sort(
key=operator.attrgetter("priority"), reverse=True)
visible_labels = []
for label in self._labels:
if label.get_visible():
for other_label in visible_labels:
if label.check_overlapping(other_label):
break
else:
visible_labels.append(label)
def _get_loc_from_angle(self, angle):
angle %= 360
if angle > 180:
angle -= 360
if abs(angle) <= 45:
loc = 'right'
elif abs(angle) >= 135:
loc = 'left'
elif angle > 45:
loc = 'top'
else: # (-135, -45)
loc = 'bottom'
return loc
def _get_loc_from_spine_overlapping(
self, spines_specs, xylabel, label_path):
"""Try to get the location from side spines and label path
Returns None if it does not apply
For instance, for each side, if any of label_path x coordinates
are beyond this side, the distance to this side is computed.
If several sides are matching (max 2), then the one with a greater
distance is kept.
This helps finding the side of labels for non-rectangular projection
with a rectangular map boundary.
"""
side_max = dist_max = None
for side, specs in spines_specs.items():
if specs['coord_type'] == xylabel:
continue
label_coords = label_path.vertices[:-1, specs['index']]
spine_coord = specs['opval'](specs['coords'])
if not specs['opcmp'](label_coords, spine_coord).any():
continue
if specs['opcmp'] is operator.ge: # top, right
dist = label_coords.min() - spine_coord
else:
dist = spine_coord - label_coords.max()
if side_max is None or dist > dist_max:
side_max = side
dist_max = dist
if side_max is None:
return "geo"
return side_max
def _get_loc_from_spine_intersection(self, spines_specs, xylabel, x, y):
"""Get the loc the intersection of a gridline with a spine
Defaults to "geo".
"""
if xylabel == "x":
sides = ["bottom", "top", "left", "right"]
else:
sides = ["left", "right", "bottom", "top"]
for side in sides:
xy = x if side in ["left", "right"] else y
coords = np.round(spines_specs[side]["coords"], 2)
if round(xy, 2) in coords:
return side
return "geo"
def _get_text_specs(self, angle, loc, xylabel):
"""Get rotation and alignments specs for a single label"""
# Angle from -180 to 180
if angle > 180:
angle -= 360
# Fake for geo spine
if loc == "geo":
loc = self._get_loc_from_angle(angle)
# Check rotation
if not self.rotate_labels:
# No rotation
kw = {'rotation': 0, "ha": "center", "va": "center"}
if loc == 'right':
kw.update(ha='left')
elif loc == 'left':
kw.update(ha='right')
elif loc == 'top':
kw.update(va='bottom')
elif loc == 'bottom':
kw.update(va='top')
else:
# Rotation along gridlines
if (isinstance(self.rotate_labels, (float, int)) and
not isinstance(self.rotate_labels, bool)):
angle = self.rotate_labels
kw = {'rotation': angle, 'rotation_mode': 'anchor', 'va': 'center'}
if (angle < 90 + self.offset_angle and
angle > -90 + self.offset_angle):
kw.update(ha="left", rotation=angle)
else:
kw.update(ha="right", rotation=angle + 180)
# Inside labels
if getattr(self, xylabel + "padding") < 0:
if "ha" in kw:
if kw["ha"] == "left":
kw["ha"] = "right"
elif kw["ha"] == "right":
kw["ha"] = "left"
if "va" in kw:
if kw["va"] == "top":
kw["va"] = "bottom"
elif kw["va"] == "bottom":
kw["va"] = "top"
return kw
def _get_padding_transform(
self, padding_angle, loc, xylabel, padding_factor=1):
"""Get transform from angle and padding for non-inline labels"""
# No rotation
if self.rotate_labels is False and loc != "geo":
padding_angle = {
'top': 90., 'right': 0., 'bottom': -90., 'left': 180.}[loc]
# Padding
if xylabel == "x":
padding = (self.xpadding if self.xpadding is not None
else matplotlib.rcParams['xtick.major.pad'])
else:
padding = (self.ypadding if self.ypadding is not None
else matplotlib.rcParams['ytick.major.pad'])
dx = padding_factor * padding * np.cos(padding_angle * np.pi / 180)
dy = padding_factor * padding * np.sin(padding_angle * np.pi / 180)
# Final transform
return mtrans.offset_copy(
self.axes.transData, fig=self.axes.figure,
x=dx, y=dy, units='points')
def _assert_can_draw_ticks(self):
"""
Check to see if ticks can be drawn. Either returns True or raises
an exception.
"""
# Check labelling is supported, currently a limited set of options.
if not isinstance(self.crs, PlateCarree):
raise TypeError(f'Cannot label {self.crs.__class__.__name__} '
'gridlines. Only PlateCarree gridlines are '
'currently supported.')
return True
def _axes_domain(self, nx=None, ny=None):
"""Return lon_range, lat_range"""
DEBUG = False
transform = self._crs_transform()
ax_transform = self.axes.transAxes
desired_trans = ax_transform - transform
nx = nx or 100
ny = ny or 100
x = np.linspace(1e-9, 1 - 1e-9, nx)
y = np.linspace(1e-9, 1 - 1e-9, ny)
x, y = np.meshgrid(x, y)
coords = np.column_stack((x.ravel(), y.ravel()))
in_data = desired_trans.transform(coords)
ax_to_bkg_patch = self.axes.transAxes - self.axes.patch.get_transform()
# convert the coordinates of the data to the background patches
# coordinates
background_coord = ax_to_bkg_patch.transform(coords)
ok = self.axes.patch.get_path().contains_points(background_coord)
if DEBUG:
import matplotlib.pyplot as plt
plt.plot(coords[ok, 0], coords[ok, 1], 'or',
clip_on=False, transform=ax_transform)
plt.plot(coords[~ok, 0], coords[~ok, 1], 'ob',
clip_on=False, transform=ax_transform)
inside = in_data[ok, :]
# If there were no data points in the axes we just use the x and y
# range of the projection.
if inside.size == 0:
lon_range = self.crs.x_limits
lat_range = self.crs.y_limits
else:
# np.isfinite must be used to prevent np.inf values that
# not filtered by np.nanmax for some projections
lat_max = np.compress(np.isfinite(inside[:, 1]),
inside[:, 1])
if lat_max.size == 0:
lon_range = self.crs.x_limits
lat_range = self.crs.y_limits
else:
lat_max = lat_max.max()
lon_range = np.nanmin(inside[:, 0]), np.nanmax(inside[:, 0])
lat_range = np.nanmin(inside[:, 1]), lat_max
# XXX Cartopy specific thing. Perhaps make this bit a specialisation
# in a subclass...
crs = self.crs
if isinstance(crs, Projection):
lon_range = np.clip(lon_range, *crs.x_limits)
lat_range = np.clip(lat_range, *crs.y_limits)
# if the limit is >90% of the full x limit, then just use the full
# x limit (this makes circular handling better)
prct = np.abs(np.diff(lon_range) / np.diff(crs.x_limits))
if prct > 0.9:
lon_range = crs.x_limits
if self.xlim is not None:
if np.iterable(self.xlim):
# tuple, list or ndarray was passed in: (-140, 160)
lon_range = self.xlim
else:
# A single int/float was passed in: 140
lon_range = (-self.xlim, self.xlim)
if self.ylim is not None:
if np.iterable(self.ylim):
# tuple, list or ndarray was passed in: (-140, 160)
lat_range = self.ylim
else:
# A single int/float was passed in: 140
lat_range = (-self.ylim, self.ylim)
return lon_range, lat_range
[docs]
def get_visible_children(self):
r"""Return a list of the visible child `.Artist`\s."""
all_children = (self.xline_artists + self.yline_artists
+ self.label_artists)
return [c for c in all_children if c.get_visible()]
[docs]
def get_tightbbox(self, renderer=None):
self._draw_gridliner(renderer=renderer)
bboxes = [c.get_tightbbox(renderer=renderer)
for c in self.get_visible_children()]
if bboxes:
return mtrans.Bbox.union(bboxes)
else:
return mtrans.Bbox.null()
[docs]
def draw(self, renderer=None):
self._draw_gridliner(renderer=renderer)
for c in self.get_visible_children():
c.draw(renderer=renderer)
class Label:
"""Helper class to manage the attributes for a single label"""
def __init__(self, artist, path, xy, loc):
self.artist = artist
self.loc = loc
self.path = path
self.xy = xy
@property
def priority(self):
return self.loc in ["left", "right", "top", "bottom"]
def set_visible(self, value):
self.artist.set_visible(value)
def get_visible(self):
return self.artist.get_visible()
def check_overlapping(self, label):
overlapping = self.path.intersects_path(label.path)
if overlapping:
self.set_visible(False)
return overlapping