Source code for cartopy.feature.nightshade

# Copyright Cartopy Contributors
#
# This file is part of Cartopy and is released under the LGPL license.
# See COPYING and COPYING.LESSER in the root of the repository for full
# licensing details.

import datetime

import numpy as np
import shapely.geometry as sgeom

from . import ShapelyFeature
from .. import crs as ccrs


[docs]class Nightshade(ShapelyFeature):
[docs] def __init__(self, date=None, delta=0.1, refraction=-0.83, color="k", alpha=0.5, **kwargs): """ Shade the darkside of the Earth, accounting for refraction. Parameters ---------- date : datetime A UTC datetime object used to calculate the position of the sun. Default: datetime.datetime.utcnow() delta : float Stepsize in degrees to determine the resolution of the night polygon feature (``npts = 180 / delta``). refraction : float The adjustment in degrees due to refraction, thickness of the solar disc, elevation etc... Note ---- Matplotlib keyword arguments can be used when drawing the feature. This allows standard Matplotlib control over aspects such as 'color', 'alpha', etc. """ if date is None: date = datetime.datetime.utcnow() # make sure date is UTC, or naive with respect to time zones if date.utcoffset(): raise ValueError( f'datetime instance must be UTC, not {date.tzname()}') # Returns the Greenwich hour angle, # need longitude (opposite direction) lat, lon = _solar_position(date) pole_lon = lon if lat > 0: pole_lat = -90 + lat central_lon = 180 else: pole_lat = 90 + lat central_lon = 0 rotated_pole = ccrs.RotatedPole(pole_latitude=pole_lat, pole_longitude=pole_lon, central_rotated_longitude=central_lon) npts = int(180/delta) x = np.empty(npts*2) y = np.empty(npts*2) # Solve the equation for sunrise/sunset: # https://en.wikipedia.org/wiki/Sunrise_equation#Generalized_equation # NOTE: In the generalized equation on Wikipedia, # delta == 0. in the rotated pole coordinate system. # Therefore, the max/min latitude is +/- (90+refraction) # Fill latitudes up and then down y[:npts] = np.linspace(-(90+refraction), 90+refraction, npts) y[npts:] = y[:npts][::-1] # Solve the generalized equation for omega0, which is the # angle of sunrise/sunset from solar noon omega0 = np.rad2deg(np.arccos(np.sin(np.deg2rad(refraction)) / np.cos(np.deg2rad(y)))) # Fill the longitude values from the offset for midnight. # This needs to be a closed loop to fill the polygon. # Negative longitudes x[:npts] = -(180 - omega0[:npts]) # Positive longitudes x[npts:] = 180 - omega0[npts:] kwargs.setdefault('facecolor', color) kwargs.setdefault('alpha', alpha) geom = sgeom.Polygon(np.column_stack((x, y))) return super().__init__( [geom], rotated_pole, **kwargs)
def _julian_day(date): """ Calculate the Julian day from an input datetime. Parameters ---------- date A UTC datetime object. Note ---- Algorithm implemented following equations from Chapter 3 (Algorithm 14): Vallado, David 'Fundamentals of Astrodynamics and Applications', (2007) Julian day epoch is: noon on January 1, 4713 BC (proleptic Julian) noon on November 24, 4714 BC (proleptic Gregorian) """ year = date.year month = date.month day = date.day hour = date.hour minute = date.minute second = date.second # January/February correspond to months 13/14 respectively # for the constants to work out properly if month < 3: month += 12 year -= 1 B = 2 - year // 100 + (year // 100) // 4 C = ((second/60 + minute)/60 + hour)/24 JD = (int(365.25*(year + 4716)) + int(30.6001*(month+1)) + day + B - 1524.5 + C) return JD def _solar_position(date): """ Calculate the latitude and longitude point where the sun is directly overhead for the given date. Parameters ---------- date A UTC datetime object. Returns ------- (latitude, longitude) in degrees Note ---- Algorithm implemented following equations from Chapter 5 (Algorithm 29): Vallado, David 'Fundamentals of Astrodynamics and Applications', (2007) """ # NOTE: Constants are in degrees in the textbook, # so we need to convert the values from deg2rad when taking sin/cos # Centuries from J2000 T_UT1 = (_julian_day(date) - 2451545.0)/36525 # solar longitude (deg) lambda_M_sun = (280.460 + 36000.771*T_UT1) % 360 # solar anomaly (deg) M_sun = (357.5277233 + 35999.05034*T_UT1) % 360 # ecliptic longitude lambda_ecliptic = (lambda_M_sun + 1.914666471*np.sin(np.deg2rad(M_sun)) + 0.019994643*np.sin(np.deg2rad(2*M_sun))) # obliquity of the ecliptic (epsilon in Vallado's notation) epsilon = 23.439291 - 0.0130042*T_UT1 # declination of the sun delta_sun = np.rad2deg(np.arcsin(np.sin(np.deg2rad(epsilon)) * np.sin(np.deg2rad(lambda_ecliptic)))) # Greenwich mean sidereal time (seconds) theta_GMST = (67310.54841 + (876600*3600 + 8640184.812866)*T_UT1 + 0.093104*T_UT1**2 - 6.2e-6*T_UT1**3) # Convert to degrees theta_GMST = (theta_GMST % 86400)/240 # Right ascension calculations numerator = (np.cos(np.deg2rad(epsilon)) * np.sin(np.deg2rad(lambda_ecliptic)) / np.cos(np.deg2rad(delta_sun))) denominator = (np.cos(np.deg2rad(lambda_ecliptic)) / np.cos(np.deg2rad(delta_sun))) alpha_sun = np.rad2deg(np.arctan2(numerator, denominator)) # longitude is opposite of Greenwich Hour Angle (GHA) # GHA == theta_GMST - alpha_sun lon = -(theta_GMST-alpha_sun) if lon < -180: lon += 360 return (delta_sun, lon)