cartopy.geodesic.Geodesic

class cartopy.geodesic.Geodesic(radius=6378137.0, flattening=0.0033528106647474805)[source]

Define an ellipsoid on which to solve geodesic problems.

__init__(radius=6378137.0, flattening=0.0033528106647474805)[source]
Parameters
  • radius (float, optional) – Equatorial radius (metres). Defaults to the WGS84 semimajor axis (6378137.0 metres).

  • flattening (float, optional) – Flattening of ellipsoid. Setting flattening = 0 gives a sphere. Negative flattening gives a prolate ellipsoid. If flattening > 1, set flattening to 1/flattening. Defaults to the WGS84 flattening (1/298.257223563).

Methods

__init__([radius, flattening])

param radius

Equatorial radius (metres). Defaults to the WGS84 semimajor axis

circle(lon, lat, radius[, n_samples, endpoint])

Find a geodesic circle of given radius at a given point.

direct(points, azimuths, distances)

Solve the direct geodesic problem where the length of the geodesic is specified in terms of distance.

geometry_length(geometry)

Return the distance (in physical meters) of the given Shapely geometry.

inverse(points, endpoints)

Solve the inverse geodesic problem.