# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
"""
The crs module defines Coordinate Reference Systems and the transformations
between them.
"""
from abc import ABCMeta
from collections import OrderedDict
from functools import lru_cache
import io
import json
import math
import warnings
import numpy as np
import pyproj
from pyproj import Transformer
from pyproj.exceptions import ProjError
import shapely.geometry as sgeom
from shapely.prepared import prep
import cartopy.trace
try:
# https://github.com/pyproj4/pyproj/pull/912
from pyproj.crs import CustomConstructorCRS as _CRS
except ImportError:
from pyproj import CRS as _CRS
__document_these__ = ['CRS', 'Geocentric', 'Geodetic', 'Globe']
WGS84_SEMIMAJOR_AXIS = 6378137.0
WGS84_SEMIMINOR_AXIS = 6356752.3142
# Cache the transformer creation method
@lru_cache
def _get_transformer_from_crs(src_crs, tgt_crs):
return Transformer.from_crs(src_crs, tgt_crs, always_xy=True)
def _safe_pj_transform(src_crs, tgt_crs, x, y, z=None, trap=True):
transformer = _get_transformer_from_crs(src_crs, tgt_crs)
# if a projection is essentially 2d there
# should be no harm in setting its z to 0
if z is None:
z = np.zeros_like(x)
with warnings.catch_warnings():
# pyproj implicitly converts size-1 arrays to scalars, which is
# deprecated in numpy 1.25, but *also* handles the future error
# see https://github.com/numpy/numpy/pull/10615
# and https://github.com/SciTools/cartopy/pull/2194
warnings.filterwarnings(
"ignore",
message="Conversion of an array with ndim > 0"
)
return transformer.transform(x, y, z, errcheck=trap)
[docs]
class Globe:
"""
Define an ellipsoid and, optionally, how to relate it to the real world.
"""
def __init__(self, datum=None, ellipse='WGS84',
semimajor_axis=None, semiminor_axis=None,
flattening=None, inverse_flattening=None,
towgs84=None, nadgrids=None):
"""
Parameters
----------
datum
Proj "datum" definition. Defaults to None.
ellipse
Proj "ellps" definition. Defaults to 'WGS84'.
semimajor_axis
Semimajor axis of the spheroid / ellipsoid. Defaults to None.
semiminor_axis
Semiminor axis of the ellipsoid. Defaults to None.
flattening
Flattening of the ellipsoid. Defaults to None.
inverse_flattening
Inverse flattening of the ellipsoid. Defaults to None.
towgs84
Passed through to the Proj definition. Defaults to None.
nadgrids
Passed through to the Proj definition. Defaults to None.
"""
self.datum = datum
self.ellipse = ellipse
self.semimajor_axis = semimajor_axis
self.semiminor_axis = semiminor_axis
self.flattening = flattening
self.inverse_flattening = inverse_flattening
self.towgs84 = towgs84
self.nadgrids = nadgrids
[docs]
def to_proj4_params(self):
"""
Create an OrderedDict of key value pairs which represents this globe
in terms of proj params.
"""
proj4_params = (
['datum', self.datum],
['ellps', self.ellipse],
['a', self.semimajor_axis],
['b', self.semiminor_axis],
['f', self.flattening],
['rf', self.inverse_flattening],
['towgs84', self.towgs84],
['nadgrids', self.nadgrids]
)
return OrderedDict((k, v) for k, v in proj4_params if v is not None)
[docs]
class CRS(_CRS):
"""
Define a Coordinate Reference System using proj. The :class:`cartopy.crs.CRS`
class is the very core of cartopy, all coordinate reference systems in cartopy
have :class:`~cartopy.crs.CRS` as a parent class.
"""
#: Whether this projection can handle ellipses.
_handles_ellipses = True
def __init__(self, proj4_params, globe=None):
"""
Parameters
----------
proj4_params: iterable of key-value pairs
The proj4 parameters required to define the
desired CRS. The parameters should not describe
the desired elliptic model, instead create an
appropriate Globe instance. The ``proj4_params``
parameters will override any parameters that the
Globe defines.
globe: :class:`~cartopy.crs.Globe` instance, optional
If omitted, the default Globe instance will be created.
See :class:`~cartopy.crs.Globe` for details.
"""
self.input = (proj4_params, globe)
# for compatibility with pyproj.CRS and rasterio.crs.CRS
try:
proj4_params = proj4_params.to_wkt()
except AttributeError:
pass
# handle PROJ JSON
if (
isinstance(proj4_params, dict) and
"proj" not in proj4_params and
"init" not in proj4_params
):
proj4_params = json.dumps(proj4_params)
if globe is not None and isinstance(proj4_params, str):
raise ValueError("Cannot have 'globe' with string params.")
if globe is None and not isinstance(proj4_params, str):
if self._handles_ellipses:
globe = Globe()
else:
globe = Globe(semimajor_axis=WGS84_SEMIMAJOR_AXIS,
ellipse=None)
if globe is not None and not self._handles_ellipses:
a = globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS
b = globe.semiminor_axis or a
if a != b or globe.ellipse is not None:
warnings.warn(f'The {self.__class__.__name__!r} projection '
'does not handle elliptical globes.')
self.globe = globe
if isinstance(proj4_params, str):
self._proj4_params = {}
self.proj4_init = proj4_params
else:
self._proj4_params = self.globe.to_proj4_params()
self._proj4_params.update(proj4_params)
init_items = []
for k, v in self._proj4_params.items():
if v is not None:
if isinstance(v, float):
init_items.append(f'+{k}={v:.16}')
elif isinstance(v, np.float32):
init_items.append(f'+{k}={v:.8}')
else:
init_items.append(f'+{k}={v}')
else:
init_items.append(f'+{k}')
self.proj4_init = ' '.join(init_items) + ' +no_defs'
super().__init__(self.proj4_init)
def __eq__(self, other):
if isinstance(other, CRS) and self.proj4_init == other.proj4_init:
# Fast path Cartopy's CRS
return True
# For everything else, we let pyproj handle the comparison
return super().__eq__(other)
def __hash__(self):
"""Hash the CRS based on its proj4_init string."""
return hash(self.proj4_init)
def __reduce__(self):
"""
Implement the __reduce__ method used when pickling or performing deepcopy.
"""
if type(self) is CRS:
# State can be reproduced by the proj4_params and globe inputs.
return self.__class__, self.input
else:
# Produces a stateless instance of this class (e.g. an empty tuple).
# The state will then be added via __getstate__ and __setstate__.
# We are forced to this approach because a CRS does not store
# the constructor keyword arguments in its state.
return self.__class__, (), self.__getstate__()
def __getstate__(self):
"""Return the full state of this instance for reconstruction
in ``__setstate__``.
"""
state = self.__dict__.copy()
# remove pyproj specific attrs
state.pop('srs', None)
state.pop('_local', None)
# Remove the proj4 instance and the proj4_init string, which can
# be re-created (in __setstate__) from the other arguments.
state.pop('proj4', None)
state.pop('proj4_init', None)
state['proj4_params'] = self.proj4_params
return state
def __setstate__(self, state):
"""
Take the dictionary created by ``__getstate__`` and passes it
through to this implementation's __init__ method.
"""
# Strip out the key state items for a CRS instance.
CRS_state = {key: state.pop(key) for key in ['proj4_params', 'globe']}
# Put everything else directly into the dict of the instance.
self.__dict__.update(state)
# Call the init of this class to ensure that the projection is
# properly initialised with proj4.
CRS.__init__(self, **CRS_state)
def _as_mpl_transform(self, axes=None):
"""
Cast this CRS instance into a :class:`matplotlib.axes.Axes` using
the Matplotlib ``_as_mpl_transform`` interface.
"""
# lazy import mpl.geoaxes (and therefore matplotlib) as mpl
# is only an optional dependency
import cartopy.mpl.geoaxes as geoaxes
if not isinstance(axes, geoaxes.GeoAxes):
raise ValueError(
'Axes should be an instance of GeoAxes, got %s' % type(axes)
)
return (
geoaxes.InterProjectionTransform(self, axes.projection) +
axes.transData
)
@property
def proj4_params(self):
return dict(self._proj4_params)
[docs]
def as_geocentric(self):
"""
Return a new Geocentric CRS with the same ellipse/datum as this
CRS.
"""
return CRS(
{
"$schema": (
"https://proj.org/schemas/v0.2/projjson.schema.json"
),
"type": "GeodeticCRS",
"name": "unknown",
"datum": self.datum.to_json_dict(),
"coordinate_system": {
"subtype": "Cartesian",
"axis": [
{
"name": "Geocentric X",
"abbreviation": "X",
"direction": "geocentricX",
"unit": "metre"
},
{
"name": "Geocentric Y",
"abbreviation": "Y",
"direction": "geocentricY",
"unit": "metre"
},
{
"name": "Geocentric Z",
"abbreviation": "Z",
"direction": "geocentricZ",
"unit": "metre"
}
]
}
}
)
[docs]
def as_geodetic(self):
"""
Return a new Geodetic CRS with the same ellipse/datum as this
CRS.
"""
return CRS(self.geodetic_crs.srs)
def is_geodetic(self):
return self.is_geographic
[docs]
class Geodetic(CRS):
"""
Define a latitude/longitude coordinate system with spherical topology,
geographical distance and coordinates are measured in degrees.
"""
def __init__(self, globe=None):
"""
Parameters
----------
globe: A :class:`cartopy.crs.Globe`, optional
Defaults to a "WGS84" datum.
"""
proj4_params = [('proj', 'lonlat')]
globe = globe or Globe(datum='WGS84')
super().__init__(proj4_params, globe)
# XXX Implement fwd such as Basemap's Geod.
# Would be used in the tissot example.
# Could come from https://geographiclib.sourceforge.io
[docs]
class Geocentric(CRS):
"""
Define a Geocentric coordinate system, where x, y, z are Cartesian
coordinates from the center of the Earth.
"""
def __init__(self, globe=None):
"""
Parameters
----------
globe: A :class:`cartopy.crs.Globe`, optional
Defaults to a "WGS84" datum.
"""
proj4_params = [('proj', 'geocent')]
globe = globe or Globe(datum='WGS84')
super().__init__(proj4_params, globe)
[docs]
class RotatedGeodetic(CRS):
"""
Define a rotated latitude/longitude coordinate system with spherical
topology and geographical distance.
Coordinates are measured in degrees.
The class uses proj to perform an ob_tran operation, using the
pole_longitude to set a lon_0 then performing two rotations based on
pole_latitude and central_rotated_longitude.
This is equivalent to setting the new pole to a location defined by
the pole_latitude and pole_longitude values in the GeogCRS defined by
globe, then rotating this new CRS about it's pole using the
central_rotated_longitude value.
"""
def __init__(self, pole_longitude, pole_latitude,
central_rotated_longitude=0.0, globe=None):
"""
Parameters
----------
pole_longitude
Pole longitude position, in unrotated degrees.
pole_latitude
Pole latitude position, in unrotated degrees.
central_rotated_longitude: optional
Longitude rotation about the new pole, in degrees. Defaults to 0.
globe: optional
A :class:`cartopy.crs.Globe`. Defaults to a "WGS84" datum.
"""
globe = globe or Globe(datum='WGS84')
proj4_params = [('proj', 'ob_tran'), ('o_proj', 'latlon'),
('o_lon_p', central_rotated_longitude),
('o_lat_p', pole_latitude),
('lon_0', 180 + pole_longitude),
('to_meter', math.radians(1) * (
globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS))]
super().__init__(proj4_params, globe=globe)
[docs]
class Projection(CRS, metaclass=ABCMeta):
"""
Define a projected coordinate system with flat topology and Euclidean
distance.
"""
_method_map = {
'Point': '_project_point',
'LineString': '_project_line_string',
'LinearRing': '_project_linear_ring',
'Polygon': '_project_polygon',
'MultiPoint': '_project_multipoint',
'MultiLineString': '_project_multiline',
'MultiPolygon': '_project_multipolygon',
}
# Whether or not this projection can handle wrapped coordinates
_wrappable = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.bounds = None
if self.area_of_use:
# Convert lat/lon bounds to projected bounds.
# Geographic area of the entire dataset referenced to WGS 84
# NB. We can't use a polygon transform at this stage because
# that relies on the existence of the map boundary... the very
# thing we're trying to work out! ;-)
x0 = self.area_of_use.west
x1 = self.area_of_use.east
y0 = self.area_of_use.south
y1 = self.area_of_use.north
lons = np.array([x0, x0, x1, x1])
lats = np.array([y0, y1, y1, y0])
points = self.transform_points(
PlateCarree().as_geodetic(), lons, lats
)
x = points[:, 0]
y = points[:, 1]
self.bounds = (x.min(), x.max(), y.min(), y.max())
x0, x1, y0, y1 = self.bounds
self.threshold = min(x1 - x0, y1 - y0) / 100.
@property
def boundary(self):
if self.bounds is None:
raise NotImplementedError
x0, x1, y0, y1 = self.bounds
return sgeom.LineString([(x0, y0), (x0, y1), (x1, y1), (x1, y0),
(x0, y0)])
@property
def x_limits(self):
if self.bounds is None:
raise NotImplementedError
x0, x1, y0, y1 = self.bounds
return (x0, x1)
@property
def y_limits(self):
if self.bounds is None:
raise NotImplementedError
x0, x1, y0, y1 = self.bounds
return (y0, y1)
@property
def threshold(self):
return getattr(self, '_threshold', 0.5)
@threshold.setter
def threshold(self, t):
self._threshold = t
@property
def cw_boundary(self):
try:
boundary = self._cw_boundary
except AttributeError:
boundary = sgeom.LinearRing(self.boundary)
self._cw_boundary = boundary
return boundary
@property
def ccw_boundary(self):
try:
boundary = self._ccw_boundary
except AttributeError:
boundary = sgeom.LinearRing(self.boundary.coords[::-1])
self._ccw_boundary = boundary
return boundary
@property
def domain(self):
try:
domain = self._domain
except AttributeError:
domain = self._domain = sgeom.Polygon(self.boundary)
return domain
def is_geodetic(self):
return False
def _determine_longitude_bounds(self, central_longitude):
# In new proj, using exact limits will wrap-around, so subtract a
# small epsilon:
epsilon = 1e-10
minlon = -180 + central_longitude
maxlon = 180 + central_longitude
if central_longitude > 0:
maxlon -= epsilon
elif central_longitude < 0:
minlon += epsilon
return minlon, maxlon
def _repr_html_(self):
from html import escape
try:
# As matplotlib is not a core cartopy dependency, don't error
# if it's not available.
import matplotlib.pyplot as plt
except ImportError:
# We can't return an SVG of the CRS, so let Jupyter fall back to
# a default repr by returning None.
return None
# Produce a visual repr of the Projection instance.
fig, ax = plt.subplots(figsize=(5, 3),
subplot_kw={'projection': self})
ax.set_global()
ax.coastlines('auto')
ax.gridlines()
buf = io.StringIO()
fig.savefig(buf, format='svg', bbox_inches='tight')
plt.close(fig)
# "Rewind" the buffer to the start and return it as an svg string.
buf.seek(0)
svg = buf.read()
return f'{svg}<pre>{escape(object.__repr__(self))}</pre>'
def _as_mpl_axes(self):
import cartopy.mpl.geoaxes as geoaxes
return geoaxes.GeoAxes, {'projection': self}
[docs]
def project_geometry(self, geometry, src_crs=None):
"""
Project the given geometry into this projection.
Parameters
----------
geometry
The geometry to (re-)project.
src_crs: optional
The source CRS. Defaults to None.
If src_crs is None, the source CRS is assumed to be a geodetic
version of the target CRS.
Returns
-------
geometry
The projected result (a shapely geometry).
"""
if src_crs is None:
src_crs = self.as_geodetic()
elif not isinstance(src_crs, CRS):
raise TypeError('Source CRS must be an instance of CRS'
' or one of its subclasses, or None.')
geom_type = geometry.geom_type
method_name = self._method_map.get(geom_type)
if not method_name:
raise ValueError(f'Unsupported geometry type {geom_type!r}')
return getattr(self, method_name)(geometry, src_crs)
def _project_point(self, point, src_crs):
return sgeom.Point(*self.transform_point(point.x, point.y, src_crs))
def _project_line_string(self, geometry, src_crs):
return cartopy.trace.project_linear(geometry, src_crs, self)
def _project_linear_ring(self, linear_ring, src_crs):
"""
Project the given LinearRing from the src_crs into this CRS and
returns a list of LinearRings and a single MultiLineString.
"""
debug = False
# 1) Resolve the initial lines into projected segments
# 1abc
# def23ghi
# jkl41
multi_line_string = cartopy.trace.project_linear(linear_ring,
src_crs, self)
# Threshold for whether a point is close enough to be the same
# point as another.
threshold = max(np.abs(self.x_limits + self.y_limits)) * 1e-5
# 2) Simplify the segments where appropriate.
if len(multi_line_string.geoms) > 1:
# Stitch together segments which are close to continuous.
# This is important when:
# 1) The first source point projects into the map and the
# ring has been cut by the boundary.
# Continuing the example from above this gives:
# def23ghi
# jkl41abc
# 2) The cut ends of segments are too close to reliably
# place into an order along the boundary.
line_strings = list(multi_line_string.geoms)
any_modified = False
i = 0
if debug:
first_coord = np.array([ls.coords[0] for ls in line_strings])
last_coord = np.array([ls.coords[-1] for ls in line_strings])
print('Distance matrix:')
np.set_printoptions(precision=2)
x = first_coord[:, np.newaxis, :]
y = last_coord[np.newaxis, :, :]
print(np.abs(x - y).max(axis=-1))
while i < len(line_strings):
modified = False
j = 0
while j < len(line_strings):
if i != j and np.allclose(line_strings[i].coords[0],
line_strings[j].coords[-1],
atol=threshold):
if debug:
print(f'Joining together {i} and {j}.')
last_coords = list(line_strings[j].coords)
first_coords = list(line_strings[i].coords)[1:]
combo = sgeom.LineString(last_coords + first_coords)
if j < i:
i, j = j, i
del line_strings[j], line_strings[i]
line_strings.append(combo)
modified = True
any_modified = True
break
else:
j += 1
if not modified:
i += 1
if any_modified:
multi_line_string = sgeom.MultiLineString(line_strings)
# 3) Check for rings that have been created by the projection stage.
rings = []
line_strings = []
for line in multi_line_string.geoms:
if len(line.coords) > 3 and np.allclose(line.coords[0],
line.coords[-1],
atol=threshold):
result_geometry = sgeom.LinearRing(line.coords[:-1])
rings.append(result_geometry)
else:
line_strings.append(line)
# If we found any rings, then we should re-create the multi-line str.
if rings:
multi_line_string = sgeom.MultiLineString(line_strings)
return rings, multi_line_string
def _project_multipoint(self, geometry, src_crs):
geoms = []
for geom in geometry.geoms:
geoms.append(self._project_point(geom, src_crs))
return sgeom.MultiPoint(geoms)
def _project_multiline(self, geometry, src_crs):
geoms = []
for geom in geometry.geoms:
r = self._project_line_string(geom, src_crs)
if r:
geoms.extend(r.geoms)
return sgeom.MultiLineString(geoms)
def _project_multipolygon(self, geometry, src_crs):
geoms = []
for geom in geometry.geoms:
r = self._project_polygon(geom, src_crs)
if r:
geoms.extend(r.geoms)
return sgeom.MultiPolygon(geoms)
def _project_polygon(self, polygon, src_crs):
"""
Return the projected polygon(s) derived from the given polygon.
"""
# Determine orientation of polygon.
# TODO: Consider checking the internal rings have the opposite
# orientation to the external rings?
if src_crs.is_geodetic():
is_ccw = True
else:
is_ccw = polygon.exterior.is_ccw
# Project the polygon exterior/interior rings.
# Each source ring will result in either a ring, or one or more
# lines.
rings = []
multi_lines = []
for src_ring in [polygon.exterior] + list(polygon.interiors):
p_rings, p_mline = self._project_linear_ring(src_ring, src_crs)
if p_rings:
rings.extend(p_rings)
if len(p_mline.geoms) > 0:
multi_lines.append(p_mline)
# Convert any lines to rings by attaching them to the boundary.
if multi_lines:
rings.extend(self._attach_lines_to_boundary(multi_lines, is_ccw))
# Resolve all the inside vs. outside rings, and convert to the
# final MultiPolygon.
return self._rings_to_multi_polygon(rings, is_ccw)
def _attach_lines_to_boundary(self, multi_line_strings, is_ccw):
"""
Return a list of LinearRings by attaching the ends of the given lines
to the boundary, paying attention to the traversal directions of the
lines and boundary.
"""
debug = False
debug_plot_edges = False
# Accumulate all the boundary and segment end points, along with
# their distance along the boundary.
edge_things = []
# Get the boundary as a LineString of the correct orientation
# so we can compute distances along it.
if is_ccw:
boundary = self.ccw_boundary
else:
boundary = self.cw_boundary
def boundary_distance(xy):
return boundary.project(sgeom.Point(*xy))
# Squash all the LineStrings into a single list.
line_strings = []
for multi_line_string in multi_line_strings:
line_strings.extend(multi_line_string.geoms)
# Record the positions of all the segment ends
for i, line_string in enumerate(line_strings):
first_dist = boundary_distance(line_string.coords[0])
thing = _BoundaryPoint(first_dist, False,
(i, 'first', line_string.coords[0]))
edge_things.append(thing)
last_dist = boundary_distance(line_string.coords[-1])
thing = _BoundaryPoint(last_dist, False,
(i, 'last', line_string.coords[-1]))
edge_things.append(thing)
# Record the positions of all the boundary vertices
for xy in boundary.coords[:-1]:
point = sgeom.Point(*xy)
dist = boundary.project(point)
thing = _BoundaryPoint(dist, True, point)
edge_things.append(thing)
if debug_plot_edges:
import matplotlib.pyplot as plt
current_fig = plt.gcf()
fig = plt.figure()
# Reset the current figure so we don't upset anything.
plt.figure(current_fig.number)
ax = fig.add_subplot(1, 1, 1)
# Order everything as if walking around the boundary.
# NB. We make line end-points take precedence over boundary points
# to ensure that end-points are still found and followed when they
# coincide.
edge_things.sort(key=lambda thing: (thing.distance, thing.kind))
remaining_ls = dict(enumerate(line_strings))
prev_thing = None
for edge_thing in edge_things[:]:
if (prev_thing is not None and
not edge_thing.kind and
not prev_thing.kind and
edge_thing.data[0] == prev_thing.data[0]):
j = edge_thing.data[0]
# Insert a edge boundary point in between this geometry.
mid_dist = (edge_thing.distance + prev_thing.distance) * 0.5
mid_point = boundary.interpolate(mid_dist)
new_thing = _BoundaryPoint(mid_dist, True, mid_point)
if debug:
print(f'Artificially insert boundary: {new_thing}')
ind = edge_things.index(edge_thing)
edge_things.insert(ind, new_thing)
prev_thing = None
else:
prev_thing = edge_thing
if debug:
print()
print('Edge things')
for thing in edge_things:
print(' ', thing)
if debug_plot_edges:
for thing in edge_things:
if isinstance(thing.data, sgeom.Point):
ax.plot(*thing.data.xy, marker='o')
else:
ax.plot(*thing.data[2], marker='o')
ls = line_strings[thing.data[0]]
coords = np.array(ls.coords)
ax.plot(coords[:, 0], coords[:, 1])
ax.text(coords[0, 0], coords[0, 1], thing.data[0])
ax.text(coords[-1, 0], coords[-1, 1],
f'{thing.data[0]}.')
def filter_last(t):
return t.kind or t.data[1] == 'first'
edge_things = list(filter(filter_last, edge_things))
processed_ls = []
while remaining_ls:
# Rename line_string to current_ls
i, current_ls = remaining_ls.popitem()
if debug:
import sys
sys.stdout.write('+')
sys.stdout.flush()
print()
print(f'Processing: {i}, {current_ls}')
added_linestring = set()
while True:
# Find out how far around this linestring's last
# point is on the boundary. We will use this to find
# the next point on the boundary.
d_last = boundary_distance(current_ls.coords[-1])
if debug:
print(f' d_last: {d_last!r}')
next_thing = _find_first_ge(edge_things, d_last)
# Remove this boundary point from the edge.
edge_things.remove(next_thing)
if debug:
print(' next_thing:', next_thing)
if next_thing.kind:
# We've just got a boundary point, add it, and keep going.
if debug:
print(' adding boundary point')
boundary_point = next_thing.data
combined_coords = (list(current_ls.coords) +
[(boundary_point.x, boundary_point.y)])
current_ls = sgeom.LineString(combined_coords)
elif next_thing.data[0] == i:
# We've gone all the way around and are now back at the
# first boundary thing.
if debug:
print(' close loop')
processed_ls.append(current_ls)
if debug_plot_edges:
coords = np.array(current_ls.coords)
ax.plot(coords[:, 0], coords[:, 1], color='black',
linestyle='--')
break
else:
if debug:
print(' adding line')
j = next_thing.data[0]
line_to_append = line_strings[j]
if j in remaining_ls:
remaining_ls.pop(j)
coords_to_append = list(line_to_append.coords)
# Build up the linestring.
current_ls = sgeom.LineString(list(current_ls.coords) +
coords_to_append)
# Catch getting stuck in an infinite loop by checking that
# linestring only added once.
if j not in added_linestring:
added_linestring.add(j)
else:
if debug_plot_edges:
plt.show()
raise RuntimeError('Unidentified problem with '
'geometry, linestring being '
're-added. Please raise an issue.')
# filter out any non-valid linear rings
def makes_valid_ring(line_string):
if len(line_string.coords) == 3:
# When sgeom.LinearRing is passed a LineString of length 3,
# if the first and last coordinate are equal, a LinearRing
# with 3 coordinates will be created. This object will cause
# a segfault when evaluated.
coords = list(line_string.coords)
return coords[0] != coords[-1] and line_string.is_valid
else:
return len(line_string.coords) > 3 and line_string.is_valid
linear_rings = [
sgeom.LinearRing(line_string)
for line_string in processed_ls
if makes_valid_ring(line_string)]
if debug:
print(' DONE')
return linear_rings
def _rings_to_multi_polygon(self, rings, is_ccw):
exterior_rings = []
interior_rings = []
for ring in rings:
if ring.is_ccw != is_ccw:
interior_rings.append(ring)
else:
exterior_rings.append(ring)
polygon_bits = []
# Turn all the exterior rings into polygon definitions,
# "slurping up" any interior rings they contain.
for exterior_ring in exterior_rings:
polygon = sgeom.Polygon(exterior_ring)
prep_polygon = prep(polygon)
holes = []
for interior_ring in interior_rings[:]:
if prep_polygon.contains(interior_ring):
holes.append(interior_ring)
interior_rings.remove(interior_ring)
elif polygon.crosses(interior_ring):
# Likely that we have an invalid geometry such as
# that from #509 or #537.
holes.append(interior_ring)
interior_rings.remove(interior_ring)
polygon_bits.append((exterior_ring.coords,
[ring.coords for ring in holes]))
# Any left over "interior" rings need "inverting" with respect
# to the boundary.
if interior_rings:
boundary_poly = self.domain
x3, y3, x4, y4 = boundary_poly.bounds
bx = (x4 - x3) * 0.1
by = (y4 - y3) * 0.1
x3 -= bx
y3 -= by
x4 += bx
y4 += by
for ring in interior_rings:
# Use shapely buffer in an attempt to fix invalid geometries
polygon = sgeom.Polygon(ring).buffer(0)
if not polygon.is_empty and polygon.is_valid:
x1, y1, x2, y2 = polygon.bounds
bx = (x2 - x1) * 0.1
by = (y2 - y1) * 0.1
x1 -= bx
y1 -= by
x2 += bx
y2 += by
box = sgeom.box(min(x1, x3), min(y1, y3),
max(x2, x4), max(y2, y4))
# Invert the polygon
polygon = box.difference(polygon)
# Intersect the inverted polygon with the boundary
polygon = boundary_poly.intersection(polygon)
if not polygon.is_empty:
polygon_bits.append(polygon)
if polygon_bits:
multi_poly = sgeom.MultiPolygon(polygon_bits)
else:
multi_poly = sgeom.MultiPolygon()
return multi_poly
class _RectangularProjection(Projection, metaclass=ABCMeta):
"""
The abstract superclass of projections with a rectangular domain which
is symmetric about the origin.
"""
_wrappable = True
def __init__(self, proj4_params, half_width, half_height, globe=None):
self._half_width = half_width
self._half_height = half_height
super().__init__(proj4_params, globe=globe)
@property
def boundary(self):
w, h = self._half_width, self._half_height
return sgeom.LinearRing([(-w, -h), (-w, h), (w, h), (w, -h), (-w, -h)])
@property
def x_limits(self):
return (-self._half_width, self._half_width)
@property
def y_limits(self):
return (-self._half_height, self._half_height)
class _CylindricalProjection(_RectangularProjection, metaclass=ABCMeta):
"""
The abstract class which denotes cylindrical projections where we
want to allow x values to wrap around.
"""
_wrappable = True
def _ellipse_boundary(semimajor=2, semiminor=1, easting=0, northing=0, n=201):
"""
Define a projection boundary using an ellipse.
This type of boundary is used by several projections.
"""
t = np.linspace(0, -2 * np.pi, n) # Clockwise boundary.
coords = np.vstack([semimajor * np.cos(t), semiminor * np.sin(t)])
coords += ([easting], [northing])
return coords
[docs]
class PlateCarree(_CylindricalProjection):
def __init__(self, central_longitude=0.0, globe=None):
globe = globe or Globe(semimajor_axis=WGS84_SEMIMAJOR_AXIS)
proj4_params = [('proj', 'eqc'), ('lon_0', central_longitude),
('to_meter', math.radians(1) * (
globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS)),
('vto_meter', 1)]
x_max = 180
y_max = 90
# Set the threshold around 0.5 if the x max is 180.
self.threshold = x_max / 360
super().__init__(proj4_params, x_max, y_max, globe=globe)
def _bbox_and_offset(self, other_plate_carree):
"""
Return a pair of (xmin, xmax) pairs and an offset which can be used
for identification of whether data in ``other_plate_carree`` needs
to be transformed to wrap appropriately.
>>> import cartopy.crs as ccrs
>>> src = ccrs.PlateCarree(central_longitude=10)
>>> bboxes, offset = ccrs.PlateCarree()._bbox_and_offset(src)
>>> print(bboxes)
[[-180, -170.0], [-170.0, 180]]
>>> print(offset)
10.0
The returned values are longitudes in ``other_plate_carree``'s
coordinate system.
Warning
-------
The two CRSs must be identical in every way, other than their
central longitudes. No checking of this is done.
"""
self_lon_0 = self.proj4_params['lon_0']
other_lon_0 = other_plate_carree.proj4_params['lon_0']
lon_0_offset = other_lon_0 - self_lon_0
lon_lower_bound_0 = self.x_limits[0]
lon_lower_bound_1 = (other_plate_carree.x_limits[0] + lon_0_offset)
if lon_lower_bound_1 < self.x_limits[0]:
lon_lower_bound_1 += np.diff(self.x_limits)[0]
lon_lower_bound_0, lon_lower_bound_1 = sorted(
[lon_lower_bound_0, lon_lower_bound_1])
bbox = [[lon_lower_bound_0, lon_lower_bound_1],
[lon_lower_bound_1, lon_lower_bound_0]]
bbox[1][1] += self.x_limits[1] - self.x_limits[0]
return bbox, lon_0_offset
def quick_vertices_transform(self, vertices, src_crs):
return_value = super().quick_vertices_transform(vertices, src_crs)
# Optimise the PlateCarree -> PlateCarree case where no
# wrapping or interpolation needs to take place.
if return_value is None and isinstance(src_crs, PlateCarree):
self_params = self.proj4_params.copy()
src_params = src_crs.proj4_params.copy()
self_params.pop('lon_0'), src_params.pop('lon_0')
xs, ys = vertices[:, 0], vertices[:, 1]
potential = (self_params == src_params and
self.y_limits[0] <= ys.min() and
self.y_limits[1] >= ys.max())
if potential:
mod = np.diff(src_crs.x_limits)[0]
bboxes, proj_offset = self._bbox_and_offset(src_crs)
x_lim = xs.min(), xs.max()
for poly in bboxes:
# Arbitrarily choose the number of moduli to look
# above and below the -180->180 range. If data is beyond
# this range, we're not going to transform it quickly.
for i in [-1, 0, 1, 2]:
offset = mod * i - proj_offset
if ((poly[0] + offset) <= x_lim[0] and
(poly[1] + offset) >= x_lim[1]):
return_value = vertices + [[-offset, 0]]
break
if return_value is not None:
break
return return_value
[docs]
class TransverseMercator(Projection):
"""
A Transverse Mercator projection.
"""
_wrappable = True
def __init__(self, central_longitude=0.0, central_latitude=0.0,
false_easting=0.0, false_northing=0.0,
scale_factor=1.0, globe=None, approx=False):
"""
Parameters
----------
central_longitude: optional
The true longitude of the central meridian in degrees.
Defaults to 0.
central_latitude: optional
The true latitude of the planar origin in degrees. Defaults to 0.
false_easting: optional
X offset from the planar origin in metres. Defaults to 0.
false_northing: optional
Y offset from the planar origin in metres. Defaults to 0.
scale_factor: optional
Scale factor at the central meridian. Defaults to 1.
globe: optional
An instance of :class:`cartopy.crs.Globe`. If omitted, a default
globe is created.
approx: optional
Whether to use Proj's approximate projection (True), or the new
Extended Transverse Mercator code (False). Defaults to True, but
will change to False in the next release.
"""
proj4_params = [('proj', 'tmerc'), ('lon_0', central_longitude),
('lat_0', central_latitude), ('k', scale_factor),
('x_0', false_easting), ('y_0', false_northing),
('units', 'm')]
if approx:
proj4_params += [('approx', None)]
super().__init__(proj4_params, globe=globe)
self.threshold = 1e4
@property
def boundary(self):
x0, x1 = self.x_limits
y0, y1 = self.y_limits
return sgeom.LinearRing([(x0, y0), (x0, y1),
(x1, y1), (x1, y0),
(x0, y0)])
@property
def x_limits(self):
return (-2e7, 2e7)
@property
def y_limits(self):
return (-1e7, 1e7)
[docs]
class OSGB(TransverseMercator):
def __init__(self, approx=False):
super().__init__(central_longitude=-2, central_latitude=49,
scale_factor=0.9996012717,
false_easting=400000, false_northing=-100000,
globe=Globe(datum='OSGB36', ellipse='airy'),
approx=approx)
@property
def boundary(self):
w = self.x_limits[1] - self.x_limits[0]
h = self.y_limits[1] - self.y_limits[0]
return sgeom.LinearRing([(0, 0), (0, h), (w, h), (w, 0), (0, 0)])
@property
def x_limits(self):
return (0, 7e5)
@property
def y_limits(self):
return (0, 13e5)
[docs]
class OSNI(TransverseMercator):
def __init__(self, approx=False):
globe = Globe(semimajor_axis=6377340.189,
semiminor_axis=6356034.447938534)
super().__init__(central_longitude=-8, central_latitude=53.5,
scale_factor=1.000035,
false_easting=200000, false_northing=250000,
globe=globe, approx=approx)
@property
def boundary(self):
w = self.x_limits[1] - self.x_limits[0]
h = self.y_limits[1] - self.y_limits[0]
return sgeom.LinearRing([(0, 0), (0, h), (w, h), (w, 0), (0, 0)])
@property
def x_limits(self):
return (18814.9667, 386062.3293)
@property
def y_limits(self):
return (11764.8481, 464720.9559)
[docs]
class UTM(Projection):
"""
Universal Transverse Mercator projection.
"""
def __init__(self, zone, southern_hemisphere=False, globe=None):
"""
Parameters
----------
zone
The numeric zone of the UTM required.
southern_hemisphere: optional
Set to True if the zone is in the southern hemisphere. Defaults to
False.
globe: optional
An instance of :class:`cartopy.crs.Globe`. If omitted, a default
globe is created.
"""
proj4_params = [('proj', 'utm'),
('units', 'm'),
('zone', zone)]
if southern_hemisphere:
proj4_params.append(('south', None))
super().__init__(proj4_params, globe=globe)
self.threshold = 1e2
@property
def boundary(self):
x0, x1 = self.x_limits
y0, y1 = self.y_limits
return sgeom.LinearRing([(x0, y0), (x0, y1),
(x1, y1), (x1, y0),
(x0, y0)])
@property
def x_limits(self):
easting = 5e5
# allow 50% overflow
return (0 - easting / 2, 2 * easting + easting / 2)
@property
def y_limits(self):
northing = 1e7
# allow 50% overflow
return (0 - northing, 2 * northing + northing / 2)
[docs]
class EuroPP(UTM):
"""
UTM Zone 32 projection for EuroPP domain.
Ellipsoid is International 1924, Datum is ED50.
"""
def __init__(self):
globe = Globe(ellipse='intl')
super().__init__(32, globe=globe)
@property
def x_limits(self):
return (-1.4e6, 2e6)
@property
def y_limits(self):
return (4e6, 7.9e6)
[docs]
class Mercator(Projection):
"""
A Mercator projection.
"""
_wrappable = True
def __init__(self, central_longitude=0.0,
min_latitude=-80.0, max_latitude=84.0,
globe=None, latitude_true_scale=None,
false_easting=0.0, false_northing=0.0, scale_factor=None):
"""
Parameters
----------
central_longitude: optional
The central longitude. Defaults to 0.
min_latitude: optional
The maximum southerly extent of the projection. Defaults
to -80 degrees.
max_latitude: optional
The maximum northerly extent of the projection. Defaults
to 84 degrees.
globe: A :class:`cartopy.crs.Globe`, optional
If omitted, a default globe is created.
latitude_true_scale: optional
The latitude where the scale is 1. Defaults to 0 degrees.
false_easting: optional
X offset from the planar origin in metres. Defaults to 0.
false_northing: optional
Y offset from the planar origin in metres. Defaults to 0.
scale_factor: optional
Scale factor at natural origin. Defaults to unused.
Notes
-----
Only one of ``latitude_true_scale`` and ``scale_factor`` should
be included.
"""
proj4_params = [('proj', 'merc'),
('lon_0', central_longitude),
('x_0', false_easting),
('y_0', false_northing),
('units', 'm')]
# If it's None, we don't pass it to Proj4, in which case its default
# of 0.0 will be used.
if latitude_true_scale is not None:
proj4_params.append(('lat_ts', latitude_true_scale))
if scale_factor is not None:
if latitude_true_scale is not None:
raise ValueError('It does not make sense to provide both '
'"scale_factor" and "latitude_true_scale". ')
else:
proj4_params.append(('k_0', scale_factor))
super().__init__(proj4_params, globe=globe)
# Need to have x/y limits defined for the initial hash which
# gets used within transform_points for caching
self._x_limits = self._y_limits = None
# Calculate limits.
minlon, maxlon = self._determine_longitude_bounds(central_longitude)
limits = self.transform_points(self.as_geodetic(),
np.array([minlon, maxlon]),
np.array([min_latitude, max_latitude]))
self._x_limits = tuple(limits[..., 0])
self._y_limits = tuple(limits[..., 1])
self.threshold = min(np.diff(self.x_limits)[0] / 720,
np.diff(self.y_limits)[0] / 360)
def __eq__(self, other):
res = super().__eq__(other)
if hasattr(other, "_y_limits") and hasattr(other, "_x_limits"):
res = res and self._y_limits == other._y_limits and \
self._x_limits == other._x_limits
return res
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.proj4_init, self._x_limits, self._y_limits))
@property
def boundary(self):
x0, x1 = self.x_limits
y0, y1 = self.y_limits
return sgeom.LinearRing([(x0, y0), (x0, y1),
(x1, y1), (x1, y0),
(x0, y0)])
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
# Define a specific instance of a Mercator projection, the Google mercator.
Mercator.GOOGLE = Mercator(min_latitude=-85.0511287798066,
max_latitude=85.0511287798066,
globe=Globe(ellipse=None,
semimajor_axis=WGS84_SEMIMAJOR_AXIS,
semiminor_axis=WGS84_SEMIMAJOR_AXIS,
nadgrids='@null'))
# Deprecated form
GOOGLE_MERCATOR = Mercator.GOOGLE
[docs]
class LambertCylindrical(_RectangularProjection):
def __init__(self, central_longitude=0.0, globe=None):
globe = globe or Globe(semimajor_axis=WGS84_SEMIMAJOR_AXIS)
proj4_params = [('proj', 'cea'), ('lon_0', central_longitude),
('to_meter', math.radians(1) * (
globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS))]
super().__init__(proj4_params, 180, math.degrees(1), globe=globe)
[docs]
class LambertZoneII(Projection):
"""
Lambert zone II (extended) projection (https://epsg.io/27572), a
legacy projection that covers hexagonal France and Corsica.
"""
def __init__(self):
crs = pyproj.CRS.from_epsg(27572)
super().__init__(crs.to_wkt())
# Projected bounds from https://epsg.io/27572
self.bounds = [-5242.32, 1212512.16, 1589155.51, 2706796.21]
[docs]
class LambertAzimuthalEqualArea(Projection):
"""
A Lambert Azimuthal Equal-Area projection.
"""
_wrappable = True
def __init__(self, central_longitude=0.0, central_latitude=0.0,
false_easting=0.0, false_northing=0.0,
globe=None):
"""
Parameters
----------
central_longitude: optional
The central longitude. Defaults to 0.
central_latitude: optional
The central latitude. Defaults to 0.
false_easting: optional
X offset from planar origin in metres. Defaults to 0.
false_northing: optional
Y offset from planar origin in metres. Defaults to 0.
globe: optional
A :class:`cartopy.crs.Globe`. If omitted, a default globe is
created.
"""
proj4_params = [('proj', 'laea'),
('lon_0', central_longitude),
('lat_0', central_latitude),
('x_0', false_easting),
('y_0', false_northing)]
super().__init__(proj4_params, globe=globe)
a = float(self.ellipsoid.semi_major_metre or WGS84_SEMIMAJOR_AXIS)
# Find the antipode, and shift it a small amount in latitude to
# approximate the extent of the projection:
lon = central_longitude + 180
sign = np.sign(central_latitude) or 1
lat = -central_latitude + sign * 0.01
x, max_y = self.transform_point(lon, lat, self.as_geodetic())
coords = _ellipse_boundary(a * 1.9999, max_y - false_northing,
false_easting, false_northing, 61)
self._boundary = sgeom.polygon.LinearRing(coords.T)
mins = np.min(coords, axis=1)
maxs = np.max(coords, axis=1)
self._x_limits = mins[0], maxs[0]
self._y_limits = mins[1], maxs[1]
self.threshold = np.diff(self._x_limits)[0] * 1e-3
@property
def boundary(self):
return self._boundary
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
[docs]
class Miller(_RectangularProjection):
_handles_ellipses = False
def __init__(self, central_longitude=0.0, globe=None):
if globe is None:
globe = Globe(semimajor_axis=WGS84_SEMIMAJOR_AXIS, ellipse=None)
a = globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS
proj4_params = [('proj', 'mill'), ('lon_0', central_longitude)]
# See Snyder, 1987. Eqs (11-1) and (11-2) substituting maximums of
# (lambda-lambda0)=180 and phi=90 to get limits.
super().__init__(proj4_params, a * np.pi, a * 2.303412543376391,
globe=globe)
[docs]
class RotatedPole(_CylindricalProjection):
"""
A rotated latitude/longitude projected coordinate system
with cylindrical topology and projected distance.
Coordinates are measured in projection metres.
The class uses proj to perform an ob_tran operation, using the
pole_longitude to set a lon_0 then performing two rotations based on
pole_latitude and central_rotated_longitude.
This is equivalent to setting the new pole to a location defined by
the pole_latitude and pole_longitude values in the GeogCRS defined by
globe, then rotating this new CRS about it's pole using the
central_rotated_longitude value.
"""
def __init__(self, pole_longitude=0.0, pole_latitude=90.0,
central_rotated_longitude=0.0, globe=None):
"""
Parameters
----------
pole_longitude: optional
Pole longitude position, in unrotated degrees. Defaults to 0.
pole_latitude: optional
Pole latitude position, in unrotated degrees. Defaults to 0.
central_rotated_longitude: optional
Longitude rotation about the new pole, in degrees. Defaults to 0.
globe: optional
An optional :class:`cartopy.crs.Globe`. Defaults to a "WGS84"
datum.
"""
globe = globe or Globe(semimajor_axis=WGS84_SEMIMAJOR_AXIS)
proj4_params = [('proj', 'ob_tran'), ('o_proj', 'latlon'),
('o_lon_p', central_rotated_longitude),
('o_lat_p', pole_latitude),
('lon_0', 180 + pole_longitude),
('to_meter', math.radians(1) * (
globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS))]
super().__init__(proj4_params, 180, 90, globe=globe)
[docs]
class Gnomonic(Projection):
_handles_ellipses = False
def __init__(self, central_latitude=0.0,
central_longitude=0.0, globe=None):
proj4_params = [('proj', 'gnom'), ('lat_0', central_latitude),
('lon_0', central_longitude)]
super().__init__(proj4_params, globe=globe)
self._max = 5e7
self.threshold = 1e5
@property
def boundary(self):
return sgeom.Point(0, 0).buffer(self._max).exterior
@property
def x_limits(self):
return (-self._max, self._max)
@property
def y_limits(self):
return (-self._max, self._max)
[docs]
class Stereographic(Projection):
_wrappable = True
def __init__(self, central_latitude=0.0, central_longitude=0.0,
false_easting=0.0, false_northing=0.0,
true_scale_latitude=None,
scale_factor=None, globe=None):
proj4_params = [('proj', 'stere'), ('lat_0', central_latitude),
('lon_0', central_longitude),
('x_0', false_easting), ('y_0', false_northing)]
if true_scale_latitude is not None:
if central_latitude not in (-90., 90.):
warnings.warn('"true_scale_latitude" parameter is only used '
'for polar stereographic projections. Consider '
'the use of "scale_factor" instead.',
stacklevel=2)
proj4_params.append(('lat_ts', true_scale_latitude))
if scale_factor is not None:
if true_scale_latitude is not None:
raise ValueError('It does not make sense to provide both '
'"scale_factor" and "true_scale_latitude". '
'Ignoring "scale_factor".')
else:
proj4_params.append(('k_0', scale_factor))
super().__init__(proj4_params, globe=globe)
# TODO: Let the globe return the semimajor axis always.
a = float(self.ellipsoid.semi_major_metre or WGS84_SEMIMAJOR_AXIS)
b = float(self.ellipsoid.semi_minor_metre or WGS84_SEMIMINOR_AXIS)
# Note: The magic number has been picked to maintain consistent
# behaviour with a wgs84 globe. There is no guarantee that the scaling
# should even be linear.
x_axis_offset = 5e7 / WGS84_SEMIMAJOR_AXIS
y_axis_offset = 5e7 / WGS84_SEMIMINOR_AXIS
self._x_limits = (-a * x_axis_offset + false_easting,
a * x_axis_offset + false_easting)
self._y_limits = (-b * y_axis_offset + false_northing,
b * y_axis_offset + false_northing)
coords = _ellipse_boundary(self._x_limits[1], self._y_limits[1],
false_easting, false_northing, 91)
self._boundary = sgeom.LinearRing(coords.T)
self.threshold = np.diff(self._x_limits)[0] * 1e-3
@property
def boundary(self):
return self._boundary
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
[docs]
class NorthPolarStereo(Stereographic):
def __init__(self, central_longitude=0.0, true_scale_latitude=None,
globe=None):
super().__init__(
central_latitude=90,
central_longitude=central_longitude,
true_scale_latitude=true_scale_latitude, # None is +90
globe=globe)
[docs]
class SouthPolarStereo(Stereographic):
def __init__(self, central_longitude=0.0, true_scale_latitude=None,
globe=None):
super().__init__(
central_latitude=-90,
central_longitude=central_longitude,
true_scale_latitude=true_scale_latitude, # None is -90
globe=globe)
[docs]
class Orthographic(Projection):
_handles_ellipses = False
def __init__(self, central_longitude=0.0, central_latitude=0.0,
globe=None):
proj4_params = [('proj', 'ortho'), ('lon_0', central_longitude),
('lat_0', central_latitude)]
super().__init__(proj4_params, globe=globe)
# TODO: Let the globe return the semimajor axis always.
a = float(self.ellipsoid.semi_major_metre or WGS84_SEMIMAJOR_AXIS)
# To stabilise the projection of geometries, we reduce the boundary by
# a tiny fraction at the cost of the extreme edges.
coords = _ellipse_boundary(a * 0.99999, a * 0.99999, n=61)
self._boundary = sgeom.polygon.LinearRing(coords.T)
mins = np.min(coords, axis=1)
maxs = np.max(coords, axis=1)
self._x_limits = mins[0], maxs[0]
self._y_limits = mins[1], maxs[1]
self.threshold = np.diff(self._x_limits)[0] * 0.02
@property
def boundary(self):
return self._boundary
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
class _WarpedRectangularProjection(Projection, metaclass=ABCMeta):
_wrappable = True
def __init__(self, proj4_params, central_longitude,
false_easting=None, false_northing=None, globe=None):
if false_easting is not None:
proj4_params += [('x_0', false_easting)]
if false_northing is not None:
proj4_params += [('y_0', false_northing)]
super().__init__(proj4_params, globe=globe)
# Obtain boundary points
minlon, maxlon = self._determine_longitude_bounds(central_longitude)
n = 91
lon = np.empty(2 * n + 1)
lat = np.empty(2 * n + 1)
lon[:n] = minlon
lat[:n] = np.linspace(-90, 90, n)
lon[n:2 * n] = maxlon
lat[n:2 * n] = np.linspace(90, -90, n)
lon[-1] = minlon
lat[-1] = -90
points = self.transform_points(self.as_geodetic(), lon, lat)
self._boundary = sgeom.LinearRing(points)
mins = np.min(points, axis=0)
maxs = np.max(points, axis=0)
self._x_limits = mins[0], maxs[0]
self._y_limits = mins[1], maxs[1]
@property
def boundary(self):
return self._boundary
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
[docs]
class Aitoff(_WarpedRectangularProjection):
"""
An Aitoff projection.
This projection is a modified azimuthal equidistant projection, balancing
shape and scale distortion. There are no standard lines and only the
central point is free of distortion.
"""
_handles_ellipses = False
def __init__(self, central_longitude=0, false_easting=None,
false_northing=None, globe=None):
"""
Parameters
----------
central_longitude: float, optional
The central longitude. Defaults to 0.
false_easting: float, optional
X offset from planar origin in metres. Defaults to 0.
false_northing: float, optional
Y offset from planar origin in metres. Defaults to 0.
globe: :class:`cartopy.crs.Globe`, optional
If omitted, a default globe is created.
.. note::
This projection does not handle elliptical globes.
"""
proj_params = [('proj', 'aitoff'),
('lon_0', central_longitude)]
super().__init__(proj_params, central_longitude,
false_easting=false_easting,
false_northing=false_northing,
globe=globe)
self.threshold = 1e5
class _Eckert(_WarpedRectangularProjection, metaclass=ABCMeta):
"""
An Eckert projection.
This class implements all the methods common to the Eckert family of
projections.
"""
_handles_ellipses = False
def __init__(self, central_longitude=0, false_easting=None,
false_northing=None, globe=None):
"""
Parameters
----------
central_longitude: float, optional
The central longitude. Defaults to 0.
false_easting: float, optional
X offset from planar origin in metres. Defaults to 0.
false_northing: float, optional
Y offset from planar origin in metres. Defaults to 0.
globe: :class:`cartopy.crs.Globe`, optional
If omitted, a default globe is created.
.. note::
This projection does not handle elliptical globes.
"""
proj4_params = [('proj', self._proj_name),
('lon_0', central_longitude)]
super().__init__(proj4_params, central_longitude,
false_easting=false_easting,
false_northing=false_northing,
globe=globe)
self.threshold = 1e5
[docs]
class EckertI(_Eckert):
"""
An Eckert I projection.
This projection is pseudocylindrical, but not equal-area. Both meridians
and parallels are straight lines. Its equal-area pair is :class:`EckertII`.
"""
_proj_name = 'eck1'
[docs]
class EckertII(_Eckert):
"""
An Eckert II projection.
This projection is pseudocylindrical, and equal-area. Both meridians and
parallels are straight lines. Its non-equal-area pair with equally-spaced
parallels is :class:`EckertI`.
"""
_proj_name = 'eck2'
[docs]
class EckertIII(_Eckert):
"""
An Eckert III projection.
This projection is pseudocylindrical, but not equal-area. Parallels are
equally-spaced straight lines, while meridians are elliptical arcs up to
semicircles on the edges. Its equal-area pair is :class:`EckertIV`.
"""
_proj_name = 'eck3'
[docs]
class EckertIV(_Eckert):
"""
An Eckert IV projection.
This projection is pseudocylindrical, and equal-area. Parallels are
unequally-spaced straight lines, while meridians are elliptical arcs up to
semicircles on the edges. Its non-equal-area pair with equally-spaced
parallels is :class:`EckertIII`.
It is commonly used for world maps.
"""
_proj_name = 'eck4'
[docs]
class EckertV(_Eckert):
"""
An Eckert V projection.
This projection is pseudocylindrical, but not equal-area. Parallels are
equally-spaced straight lines, while meridians are sinusoidal arcs. Its
equal-area pair is :class:`EckertVI`.
"""
_proj_name = 'eck5'
[docs]
class EckertVI(_Eckert):
"""
An Eckert VI projection.
This projection is pseudocylindrical, and equal-area. Parallels are
unequally-spaced straight lines, while meridians are sinusoidal arcs. Its
non-equal-area pair with equally-spaced parallels is :class:`EckertV`.
It is commonly used for world maps.
"""
_proj_name = 'eck6'
[docs]
class EqualEarth(_WarpedRectangularProjection):
"""
An Equal Earth projection.
This projection is pseudocylindrical, and equal area. Parallels are
unequally-spaced straight lines, while meridians are equally-spaced arcs.
It is intended for world maps.
Note
----
To use this projection, you must be using Proj 5.2.0 or newer.
References
----------
Bojan Šavrič, Tom Patterson & Bernhard Jenny (2018)
The Equal Earth map projection,
International Journal of Geographical Information Science,
DOI: 10.1080/13658816.2018.1504949
"""
def __init__(self, central_longitude=0, false_easting=None,
false_northing=None, globe=None):
"""
Parameters
----------
central_longitude: float, optional
The central longitude. Defaults to 0.
false_easting: float, optional
X offset from planar origin in metres. Defaults to 0.
false_northing: float, optional
Y offset from planar origin in metres. Defaults to 0.
globe: :class:`cartopy.crs.Globe`, optional
If omitted, a default globe is created.
"""
proj_params = [('proj', 'eqearth'), ('lon_0', central_longitude)]
super().__init__(proj_params, central_longitude,
false_easting=false_easting,
false_northing=false_northing,
globe=globe)
self.threshold = 1e5
[docs]
class Hammer(_WarpedRectangularProjection):
"""
A Hammer projection.
This projection is a modified `.LambertAzimuthalEqualArea` projection,
similar to `.Aitoff`, and intended to reduce distortion in the outer
meridians compared to `.Mollweide`. There are no standard lines and only
the central point is free of distortion.
"""
_handles_ellipses = False
def __init__(self, central_longitude=0, false_easting=None,
false_northing=None, globe=None):
"""
Parameters
----------
central_longitude: float, optional
The central longitude. Defaults to 0.
false_easting: float, optional
X offset from planar origin in metres. Defaults to 0.
false_northing: float, optional
Y offset from planar origin in metres. Defaults to 0.
globe: :class:`cartopy.crs.Globe`, optional
If omitted, a default globe is created.
.. note::
This projection does not handle elliptical globes.
"""
proj4_params = [('proj', 'hammer'),
('lon_0', central_longitude)]
super().__init__(proj4_params, central_longitude,
false_easting=false_easting,
false_northing=false_northing,
globe=globe)
self.threshold = 1e5
[docs]
class Mollweide(_WarpedRectangularProjection):
"""
A Mollweide projection.
This projection is pseudocylindrical, and equal area. Parallels are
unequally-spaced straight lines, while meridians are elliptical arcs up to
semicircles on the edges. Poles are points.
It is commonly used for world maps, or interrupted with several central
meridians.
"""
_handles_ellipses = False
def __init__(self, central_longitude=0, globe=None,
false_easting=None, false_northing=None):
"""
Parameters
----------
central_longitude: float, optional
The central longitude. Defaults to 0.
false_easting: float, optional
X offset from planar origin in metres. Defaults to 0.
false_northing: float, optional
Y offset from planar origin in metres. Defaults to 0.
globe: :class:`cartopy.crs.Globe`, optional
If omitted, a default globe is created.
.. note::
This projection does not handle elliptical globes.
"""
proj4_params = [('proj', 'moll'), ('lon_0', central_longitude)]
super().__init__(proj4_params, central_longitude,
false_easting=false_easting,
false_northing=false_northing,
globe=globe)
self.threshold = 1e5
[docs]
class Robinson(_WarpedRectangularProjection):
"""
A Robinson projection.
This projection is pseudocylindrical, and a compromise that is neither
equal-area nor conformal. Parallels are unequally-spaced straight lines,
and meridians are curved lines of no particular form.
It is commonly used for "visually-appealing" world maps.
"""
_handles_ellipses = False
def __init__(self, central_longitude=0, globe=None,
false_easting=None, false_northing=None):
"""
Parameters
----------
central_longitude: float, optional
The central longitude. Defaults to 0.
false_easting: float, optional
X offset from planar origin in metres. Defaults to 0.
false_northing: float, optional
Y offset from planar origin in metres. Defaults to 0.
globe: :class:`cartopy.crs.Globe`, optional
If omitted, a default globe is created.
.. note::
This projection does not handle elliptical globes.
"""
proj4_params = [('proj', 'robin'), ('lon_0', central_longitude)]
super().__init__(proj4_params, central_longitude,
false_easting=false_easting,
false_northing=false_northing,
globe=globe)
self.threshold = 1e4
def transform_point(self, x, y, src_crs, trap=True):
"""
Capture and handle any input NaNs, else invoke parent function,
:meth:`_WarpedRectangularProjection.transform_point`.
Needed because input NaNs can trigger a fatal error in the underlying
implementation of the Robinson projection.
Note
----
Although the original can in fact translate (nan, lat) into
(nan, y-value), this patched version doesn't support that.
"""
if np.isnan(x) or np.isnan(y):
result = (np.nan, np.nan)
else:
result = super().transform_point(x, y, src_crs, trap=trap)
return result
def transform_points(self, src_crs, x, y, z=None, trap=False):
"""
Capture and handle NaNs in input points -- else as parent function,
:meth:`_WarpedRectangularProjection.transform_points`.
Needed because input NaNs can trigger a fatal error in the underlying
implementation of the Robinson projection.
Note
----
Although the original can in fact translate (nan, lat) into
(nan, y-value), this patched version doesn't support that.
Instead, we invalidate any of the points that contain a NaN.
"""
input_point_nans = np.isnan(x) | np.isnan(y)
if z is not None:
input_point_nans |= np.isnan(z)
handle_nans = np.any(input_point_nans)
if handle_nans:
# Remove NaN points from input data to avoid the error.
x[input_point_nans] = 0.0
y[input_point_nans] = 0.0
if z is not None:
z[input_point_nans] = 0.0
result = super().transform_points(src_crs, x, y, z, trap=trap)
if handle_nans:
# Result always has shape (N, 3).
# Blank out each (whole) point where we had a NaN in the input.
result[input_point_nans] = np.nan
return result
[docs]
class InterruptedGoodeHomolosine(Projection):
"""
Composite equal-area projection emphasizing either land or
ocean features.
Original Reference:
Goode, J. P., 1925: The Homolosine Projection: A new device for
portraying the Earth's surface entire. Annals of the
Association of American Geographers, 15:3, 119-125,
DOI: 10.1080/00045602509356949
A central_longitude value of -160 is recommended for the oceanic view.
"""
_wrappable = True
def __init__(self, central_longitude=0, globe=None, emphasis='land'):
"""
Parameters
----------
central_longitude : float, optional
The central longitude, by default 0
globe : :class:`cartopy.crs.Globe`, optional
If omitted, a default Globe object is created, by default None
emphasis : str, optional
Options 'land' and 'ocean' are available, by default 'land'
"""
if emphasis == 'land':
proj4_params = [('proj', 'igh'), ('lon_0', central_longitude)]
super().__init__(proj4_params, globe=globe)
elif emphasis == 'ocean':
proj4_params = [('proj', 'igh_o'), ('lon_0', central_longitude)]
super().__init__(proj4_params, globe=globe)
else:
msg = '`emphasis` needs to be either \'land\' or \'ocean\''
raise ValueError(msg)
minlon, maxlon = self._determine_longitude_bounds(central_longitude)
epsilon = 1e-10
# Obtain boundary points
n = 31
if emphasis == 'land':
top_interrupted_lons = (-40.0,)
bottom_interrupted_lons = (80.0, -20.0, -100.0)
elif emphasis == 'ocean':
top_interrupted_lons = (-90.0, 60.0)
bottom_interrupted_lons = (90.0, -60.0)
lons = np.empty(
(2 + 2 * len(top_interrupted_lons + bottom_interrupted_lons)) * n +
1)
lats = np.empty(
(2 + 2 * len(top_interrupted_lons + bottom_interrupted_lons)) * n +
1)
end = 0
# Left boundary
lons[end:end + n] = minlon
lats[end:end + n] = np.linspace(-90, 90, n)
end += n
# Top boundary
for lon in top_interrupted_lons:
lons[end:end + n] = lon - epsilon + central_longitude
lats[end:end + n] = np.linspace(90, 0, n)
end += n
lons[end:end + n] = lon + epsilon + central_longitude
lats[end:end + n] = np.linspace(0, 90, n)
end += n
# Right boundary
lons[end:end + n] = maxlon
lats[end:end + n] = np.linspace(90, -90, n)
end += n
# Bottom boundary
for lon in bottom_interrupted_lons:
lons[end:end + n] = lon + epsilon + central_longitude
lats[end:end + n] = np.linspace(-90, 0, n)
end += n
lons[end:end + n] = lon - epsilon + central_longitude
lats[end:end + n] = np.linspace(0, -90, n)
end += n
# Close loop
lons[-1] = minlon
lats[-1] = -90
points = self.transform_points(self.as_geodetic(), lons, lats)
self._boundary = sgeom.LinearRing(points)
mins = np.min(points, axis=0)
maxs = np.max(points, axis=0)
self._x_limits = mins[0], maxs[0]
self._y_limits = mins[1], maxs[1]
self.threshold = 2e4
@property
def boundary(self):
return self._boundary
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
class _Satellite(Projection):
def __init__(self, projection, satellite_height=35785831,
central_longitude=0.0, central_latitude=0.0,
false_easting=0, false_northing=0, globe=None,
sweep_axis=None):
proj4_params = [('proj', projection), ('lon_0', central_longitude),
('lat_0', central_latitude), ('h', satellite_height),
('x_0', false_easting), ('y_0', false_northing),
('units', 'm')]
if sweep_axis:
proj4_params.append(('sweep', sweep_axis))
super().__init__(proj4_params, globe=globe)
def _set_boundary(self, coords):
self._boundary = sgeom.LinearRing(coords.T)
mins = np.min(coords, axis=1)
maxs = np.max(coords, axis=1)
self._x_limits = mins[0], maxs[0]
self._y_limits = mins[1], maxs[1]
self.threshold = np.diff(self._x_limits)[0] * 0.02
@property
def boundary(self):
return self._boundary
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
[docs]
class Geostationary(_Satellite):
"""
A view appropriate for satellites in Geostationary Earth orbit.
Perspective view looking directly down from above a point on the equator.
In this projection, the projected coordinates are scanning angles measured
from the satellite looking directly downward, multiplied by the height of
the satellite.
"""
def __init__(self, central_longitude=0.0, satellite_height=35785831,
false_easting=0, false_northing=0, globe=None,
sweep_axis='y'):
"""
Parameters
----------
central_longitude: float, optional
The central longitude. Defaults to 0.
satellite_height: float, optional
The height of the satellite. Defaults to 35785831 metres
(true geostationary orbit).
false_easting:
X offset from planar origin in metres. Defaults to 0.
false_northing:
Y offset from planar origin in metres. Defaults to 0.
globe: :class:`cartopy.crs.Globe`, optional
If omitted, a default globe is created.
sweep_axis: 'x' or 'y', optional. Defaults to 'y'.
Controls which axis is scanned first, and thus which angle is
applied first. The default is appropriate for Meteosat, while
'x' should be used for GOES.
"""
super().__init__(
projection='geos',
satellite_height=satellite_height,
central_longitude=central_longitude,
central_latitude=0.0,
false_easting=false_easting,
false_northing=false_northing,
globe=globe,
sweep_axis=sweep_axis)
# TODO: Let the globe return the semimajor axis always.
a = float(self.ellipsoid.semi_major_metre or WGS84_SEMIMAJOR_AXIS)
b = float(self.ellipsoid.semi_minor_metre or WGS84_SEMIMINOR_AXIS)
h = float(satellite_height)
# To find the bound we trace around where the line from the satellite
# is tangent to the surface. This involves trigonometry on a sphere
# centered at the satellite. The two scanning angles form two legs of
# triangle on this sphere--the hypotenuse "c" (angle arc) is controlled
# by distance from center to the edge of the ellipse being seen.
# This is one of the angles in the spherical triangle and used to
# rotate around and "scan" the boundary
angleA = np.linspace(0, -2 * np.pi, 91) # Clockwise boundary.
# Convert the angle around center to the proper value to use in the
# parametric form of an ellipse
th = np.arctan(a / b * np.tan(angleA))
# Given the position on the ellipse, what is the distance from center
# to the ellipse--and thus the tangent point
r = np.hypot(a * np.cos(th), b * np.sin(th))
sat_dist = a + h
# Using this distance, solve for sin and tan of c in the triangle that
# includes the satellite, Earth center, and tangent point--we need to
# figure out the location of this tangent point on the elliptical
# cross-section through the Earth towards the satellite, where the
# major axis is a and the minor is r. With the ellipse centered on the
# Earth and the satellite on the y-axis (at y = a + h = sat_dist), the
# equation for an ellipse and some calculus gives us the tangent point
# (x0, y0) as:
# y0 = a**2 / sat_dist
# x0 = r * np.sqrt(1 - a**2 / sat_dist**2)
# which gives:
# sin_c = x0 / np.hypot(x0, sat_dist - y0)
# tan_c = x0 / (sat_dist - y0)
# A bit of algebra combines these to give directly:
sin_c = r / np.sqrt(sat_dist ** 2 - a ** 2 + r ** 2)
tan_c = r / np.sqrt(sat_dist ** 2 - a ** 2)
# Using Napier's rules for right spherical triangles R2 and R6,
# (See https://en.wikipedia.org/wiki/Spherical_trigonometry), we can
# solve for arc angles b and a, which are our x and y scanning angles,
# respectively.
coords = np.vstack([np.arctan(np.cos(angleA) * tan_c), # R6
np.arcsin(np.sin(angleA) * sin_c)]) # R2
# Need to multiply scanning angles by satellite height to get to the
# actual native coordinates for the projection.
coords *= h
coords += np.array([[false_easting], [false_northing]])
self._set_boundary(coords)
[docs]
class NearsidePerspective(_Satellite):
"""
Perspective view looking directly down from above a point on the globe.
In this projection, the projected coordinates are x and y measured from
the origin of a plane tangent to the Earth directly below the perspective
point (e.g. a satellite).
"""
_handles_ellipses = False
def __init__(self, central_longitude=0.0, central_latitude=0.0,
satellite_height=35785831,
false_easting=0, false_northing=0, globe=None):
"""
Parameters
----------
central_longitude: float, optional
The central longitude. Defaults to 0.
central_latitude: float, optional
The central latitude. Defaults to 0.
satellite_height: float, optional
The height of the satellite. Defaults to 35785831 meters
(true geostationary orbit).
false_easting:
X offset from planar origin in metres. Defaults to 0.
false_northing:
Y offset from planar origin in metres. Defaults to 0.
globe: :class:`cartopy.crs.Globe`, optional
If omitted, a default globe is created.
.. note::
This projection does not handle elliptical globes.
"""
super().__init__(
projection='nsper',
satellite_height=satellite_height,
central_longitude=central_longitude,
central_latitude=central_latitude,
false_easting=false_easting,
false_northing=false_northing,
globe=globe)
# TODO: Let the globe return the semimajor axis always.
a = self.ellipsoid.semi_major_metre or WGS84_SEMIMAJOR_AXIS
h = float(satellite_height)
max_x = a * np.sqrt(h / (2 * a + h))
coords = _ellipse_boundary(max_x, max_x,
false_easting, false_northing, 61)
self._set_boundary(coords)
[docs]
class AlbersEqualArea(Projection):
"""
An Albers Equal Area projection
This projection is conic and equal-area, and is commonly used for maps of
the conterminous United States.
"""
def __init__(self, central_longitude=0.0, central_latitude=0.0,
false_easting=0.0, false_northing=0.0,
standard_parallels=(20.0, 50.0), globe=None):
"""
Parameters
----------
central_longitude: optional
The central longitude. Defaults to 0.
central_latitude: optional
The central latitude. Defaults to 0.
false_easting: optional
X offset from planar origin in metres. Defaults to 0.
false_northing: optional
Y offset from planar origin in metres. Defaults to 0.
standard_parallels: optional
The one or two latitudes of correct scale. Defaults to (20, 50).
globe: optional
A :class:`cartopy.crs.Globe`. If omitted, a default globe is
created.
"""
proj4_params = [('proj', 'aea'),
('lon_0', central_longitude),
('lat_0', central_latitude),
('x_0', false_easting),
('y_0', false_northing)]
if standard_parallels is not None:
try:
proj4_params.append(('lat_1', standard_parallels[0]))
try:
proj4_params.append(('lat_2', standard_parallels[1]))
except IndexError:
pass
except TypeError:
proj4_params.append(('lat_1', standard_parallels))
super().__init__(proj4_params, globe=globe)
# bounds
minlon, maxlon = self._determine_longitude_bounds(central_longitude)
n = 103
lons = np.empty(2 * n + 1)
lats = np.empty(2 * n + 1)
tmp = np.linspace(minlon, maxlon, n)
lons[:n] = tmp
lats[:n] = 90
lons[n:-1] = tmp[::-1]
lats[n:-1] = -90
lons[-1] = lons[0]
lats[-1] = lats[0]
points = self.transform_points(self.as_geodetic(), lons, lats)
self._boundary = sgeom.LinearRing(points)
mins = np.min(points, axis=0)
maxs = np.max(points, axis=0)
self._x_limits = mins[0], maxs[0]
self._y_limits = mins[1], maxs[1]
self.threshold = 1e5
@property
def boundary(self):
return self._boundary
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
[docs]
class AzimuthalEquidistant(Projection):
"""
An Azimuthal Equidistant projection
This projection provides accurate angles about and distances through the
central position. Other angles, distances, or areas may be distorted.
"""
_wrappable = True
def __init__(self, central_longitude=0.0, central_latitude=0.0,
false_easting=0.0, false_northing=0.0,
globe=None):
"""
Parameters
----------
central_longitude: optional
The true longitude of the central meridian in degrees.
Defaults to 0.
central_latitude: optional
The true latitude of the planar origin in degrees.
Defaults to 0.
false_easting: optional
X offset from the planar origin in metres. Defaults to 0.
false_northing: optional
Y offset from the planar origin in metres. Defaults to 0.
globe: optional
An instance of :class:`cartopy.crs.Globe`. If omitted, a default
globe is created.
"""
proj4_params = [('proj', 'aeqd'), ('lon_0', central_longitude),
('lat_0', central_latitude),
('x_0', false_easting), ('y_0', false_northing)]
super().__init__(proj4_params, globe=globe)
# TODO: Let the globe return the semimajor axis always.
a = float(self.ellipsoid.semi_major_metre or WGS84_SEMIMAJOR_AXIS)
b = float(self.ellipsoid.semi_minor_metre or a)
coords = _ellipse_boundary(a * np.pi, b * np.pi,
false_easting, false_northing, 61)
self._boundary = sgeom.LinearRing(coords.T)
mins = np.min(coords, axis=1)
maxs = np.max(coords, axis=1)
self._x_limits = mins[0], maxs[0]
self._y_limits = mins[1], maxs[1]
self.threshold = 1e5
@property
def boundary(self):
return self._boundary
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
[docs]
class Sinusoidal(Projection):
"""
A Sinusoidal projection.
This projection is equal-area.
"""
def __init__(self, central_longitude=0.0, false_easting=0.0,
false_northing=0.0, globe=None):
"""
Parameters
----------
central_longitude: optional
The central longitude. Defaults to 0.
false_easting: optional
X offset from planar origin in metres. Defaults to 0.
false_northing: optional
Y offset from planar origin in metres. Defaults to 0.
globe: optional
A :class:`cartopy.crs.Globe`. If omitted, a default globe is
created.
"""
proj4_params = [('proj', 'sinu'),
('lon_0', central_longitude),
('x_0', false_easting),
('y_0', false_northing)]
super().__init__(proj4_params, globe=globe)
# Obtain boundary points
minlon, maxlon = self._determine_longitude_bounds(central_longitude)
points = []
n = 91
lon = np.empty(2 * n + 1)
lat = np.empty(2 * n + 1)
lon[:n] = minlon
lat[:n] = np.linspace(-90, 90, n)
lon[n:2 * n] = maxlon
lat[n:2 * n] = np.linspace(90, -90, n)
lon[-1] = minlon
lat[-1] = -90
points = self.transform_points(self.as_geodetic(), lon, lat)
self._boundary = sgeom.LinearRing(points)
mins = np.min(points, axis=0)
maxs = np.max(points, axis=0)
self._x_limits = mins[0], maxs[0]
self._y_limits = mins[1], maxs[1]
self.threshold = max(np.abs(self.x_limits + self.y_limits)) * 1e-5
@property
def boundary(self):
return self._boundary
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
# MODIS data products use a Sinusoidal projection of a spherical Earth
# https://modis-land.gsfc.nasa.gov/GCTP.html
Sinusoidal.MODIS = Sinusoidal(globe=Globe(ellipse=None,
semimajor_axis=6371007.181,
semiminor_axis=6371007.181))
[docs]
class EquidistantConic(Projection):
"""
An Equidistant Conic projection.
This projection is conic and equidistant, and the scale is true along all
meridians and along one or two specified standard parallels.
"""
def __init__(self, central_longitude=0.0, central_latitude=0.0,
false_easting=0.0, false_northing=0.0,
standard_parallels=(20.0, 50.0), globe=None):
"""
Parameters
----------
central_longitude: optional
The central longitude. Defaults to 0.
central_latitude: optional
The true latitude of the planar origin in degrees. Defaults to 0.
false_easting: optional
X offset from planar origin in metres. Defaults to 0.
false_northing: optional
Y offset from planar origin in metres. Defaults to 0.
standard_parallels: optional
The one or two latitudes of correct scale. Defaults to (20, 50).
globe: optional
A :class:`cartopy.crs.Globe`. If omitted, a default globe is
created.
"""
proj4_params = [('proj', 'eqdc'),
('lon_0', central_longitude),
('lat_0', central_latitude),
('x_0', false_easting),
('y_0', false_northing)]
if standard_parallels is not None:
try:
proj4_params.append(('lat_1', standard_parallels[0]))
try:
proj4_params.append(('lat_2', standard_parallels[1]))
except IndexError:
pass
except TypeError:
proj4_params.append(('lat_1', standard_parallels))
super().__init__(proj4_params, globe=globe)
# bounds
n = 103
lons = np.empty(2 * n + 1)
lats = np.empty(2 * n + 1)
minlon, maxlon = self._determine_longitude_bounds(central_longitude)
tmp = np.linspace(minlon, maxlon, n)
lons[:n] = tmp
lats[:n] = 90
lons[n:-1] = tmp[::-1]
lats[n:-1] = -90
lons[-1] = lons[0]
lats[-1] = lats[0]
points = self.transform_points(self.as_geodetic(), lons, lats)
self._boundary = sgeom.LinearRing(points)
mins = np.min(points, axis=0)
maxs = np.max(points, axis=0)
self._x_limits = mins[0], maxs[0]
self._y_limits = mins[1], maxs[1]
self.threshold = 1e5
@property
def boundary(self):
return self._boundary
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
[docs]
class ObliqueMercator(Projection):
"""
An Oblique Mercator projection.
"""
_wrappable = True
def __init__(self, central_longitude=0.0, central_latitude=0.0,
false_easting=0.0, false_northing=0.0,
scale_factor=1.0, azimuth=0.0, globe=None):
"""
Parameters
----------
central_longitude: optional
The true longitude of the central meridian in degrees.
Defaults to 0.
central_latitude: optional
The true latitude of the planar origin in degrees. Defaults to 0.
false_easting: optional
X offset from the planar origin in metres. Defaults to 0.
false_northing: optional
Y offset from the planar origin in metres. Defaults to 0.
scale_factor: optional
Scale factor at the central meridian. Defaults to 1.
azimuth: optional
Azimuth of centerline clockwise from north at the center point of
the centre line. Defaults to 0.
globe: optional
An instance of :class:`cartopy.crs.Globe`. If omitted, a default
globe is created.
Notes
-----
The 'Rotated Mercator' projection can be achieved using Oblique
Mercator with `azimuth` ``=90``.
"""
if np.isclose(azimuth, 90):
# Exactly 90 causes coastline 'folding'.
azimuth -= 1e-3
proj4_params = [('proj', 'omerc'), ('lonc', central_longitude),
('lat_0', central_latitude), ('k', scale_factor),
('x_0', false_easting), ('y_0', false_northing),
('alpha', azimuth), ('units', 'm')]
super().__init__(proj4_params, globe=globe)
# Couple limits to those of Mercator - delivers acceptable plots, and
# Mercator has been through much more scrutiny.
mercator = Mercator(
central_longitude=central_longitude,
globe=globe,
false_easting=false_easting,
false_northing=false_northing,
scale_factor=scale_factor,
)
self._x_limits = mercator.x_limits
self._y_limits = mercator.y_limits
self.threshold = mercator.threshold
@property
def boundary(self):
x0, x1 = self.x_limits
y0, y1 = self.y_limits
return sgeom.LinearRing([(x0, y0), (x0, y1),
(x1, y1), (x1, y0),
(x0, y0)])
@property
def x_limits(self):
return self._x_limits
@property
def y_limits(self):
return self._y_limits
class _BoundaryPoint:
def __init__(self, distance, kind, data):
"""
A representation for a geometric object which is
connected to the boundary.
Parameters
----------
distance: float
The distance along the boundary that this object
can be found.
kind: bool
Whether this object represents a point from the
pre-computed boundary.
data: point or namedtuple
The actual data that this boundary object represents.
"""
self.distance = distance
self.kind = kind
self.data = data
def __repr__(self):
return f'_BoundaryPoint({self.distance!r}, {self.kind!r}, {self.data})'
def _find_first_ge(a, x):
for v in a:
if v.distance >= x:
return v
# We've gone all the way around, so pick the first point again.
return a[0]
[docs]
def epsg(code):
"""
Return the projection which corresponds to the given EPSG code.
The EPSG code must correspond to a "projected coordinate system",
so EPSG codes such as 4326 (WGS-84) which define a "geodetic coordinate
system" will not work.
Note
----
The conversion is performed by pyproj.CRS.
"""
import cartopy._epsg
return cartopy._epsg._EPSGProjection(code)