Note
Click here to download the full example code
Contour transform options¶
This example demonstrates the difference between transforming the points before/after generating the contours. It uses the transform_first keyword argument to indicate that Cartopy should transform the points before calling the contouring algorithm, which can have a significant impact on speed (it is much faster to transform points than it is to transform patches). This does have a negative impact on the wrapped coordinates as one can see in the second axes that the data does not extend to the full global extent.
![transform_first=False, transform_first=True](../../_images/sphx_glr_contour_transforms_001.png)
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from waves import sample_data
def main():
# Use the waves example to provide some sample data, but make it
# more dependent on y for more interesting contours.
x, y, z = sample_data((20, 40))
z = z * -1.5 * y
# Setup a global EckertIII map with faint coastlines.
fig = plt.figure()
ax1 = fig.add_subplot(2, 1, 1, projection=ccrs.EckertIII())
ax1.set_title("transform_first=False")
ax2 = fig.add_subplot(2, 1, 2, projection=ccrs.EckertIII())
ax2.set_title("transform_first=True")
for ax, transform_first in zip([ax1, ax2], [False, True]):
ax.set_global()
ax.coastlines('110m', alpha=0.1)
# Add colourful filled contours.
filled_c = ax.contourf(x, y, z, transform=ccrs.PlateCarree(),
transform_first=transform_first)
# And black line contours.
ax.contour(x, y, z, levels=filled_c.levels,
colors=['black'],
transform=ccrs.PlateCarree(),
transform_first=transform_first)
plt.show()
if __name__ == '__main__':
main()
Total running time of the script: ( 0 minutes 0.614 seconds)