class cartopy.geodesic.Geodesic(radius=6378137.0, flattening=0.0033528106647474805)[source]

Define an ellipsoid on which to solve geodesic problems.

__init__(radius=6378137.0, flattening=0.0033528106647474805)[source]
  • radius (float, optional) – Equatorial radius (metres). Defaults to the WGS84 semimajor axis (6378137.0 metres).

  • flattening (float, optional) – Flattening of ellipsoid. Setting flattening = 0 gives a sphere. Negative flattening gives a prolate ellipsoid. If flattening > 1, set flattening to 1/flattening. Defaults to the WGS84 flattening (1/298.257223563).


__init__([radius, flattening])

param radius

Equatorial radius (metres). Defaults to the WGS84 semimajor axis

circle(lon, lat, radius[, n_samples, endpoint])

Find a geodesic circle of given radius at a given point.

direct(points, azimuths, distances)

Solve the direct geodesic problem where the length of the geodesic is specified in terms of distance.


Return the distance (in physical meters) of the given Shapely geometry.

inverse(points, endpoints)

Solve the inverse geodesic problem.